|
|||
DRUGS & SUPPLEMENTS
|
When are you taking this medicine? |
Calcium Chloride Dihydrate:
Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate is a phosphate binder indicated to reduce serum phosphorus in patients with end stage renal disease (ESRD).
- Calcium acetate is a phosphate binder indicated for the reduction of serum phosphorus in patients with end stage renal disease. (1)
The recommended initial dose of Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate for the adult dialysis patient is 2 capsules with each meal. Increase the dose gradually to lower serum phosphorus levels to the target range, as long as hypercalcemia does not develop. Most patients require 3 to 4 capsules with each meal.
- Starting dose is 2 capsules with each meal. (2)
- Titrate the dose every 2 to 3 weeks until acceptable serum phosphorus level is reached. Most patients require 3 to 4 capsules with each meal. (2)
Capsule: 667 mg Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate capsule.
- Capsule: 667 mg Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate capsule. (3)
Patients with hypercalcemia.
- Hypercalcemia. (4)
- Treat mild hypercalcemia by reducing or interrupting Bicanova 2.3% Glucose acetate and Vitamin D. Severe hypercalcemia may require hemodialysis and discontinuation of Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate. (5.1)
- Hypercalcemia may aggravate digitalis toxicity. (5.2)
Patients with end stage renal disease may develop hypercalcemia when treated with Bicanova 2.3% Glucose (Calcium Chloride Dihydrate), including Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate. Avoid the use of Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) supplements, including Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) based nonprescription antacids, concurrently with Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate.
An overdose of Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate may lead to progressive hypercalcemia, which may require emergency measures. Therefore, early in the treatment phase during the dosage adjustment period, monitor serum Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) levels twice weekly. Should hypercalcemia develop, reduce the Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate dosage, or discontinue the treatment, depending on the severity of hypercalcemia
More severe hypercalcemia (Ca >12 mg/dL) is associated with confusion, delirium, stupor and coma. Severe hypercalcemia can be treated by acute hemodialysis and discontinuing Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate therapy.
Mild hypercalcemia (10.5 to 11.9 mg/dL) may be asymptomatic or manifest as constipation, anorexia, nausea, and vomiting. Mild hypercalcemia is usually controlled by reducing the Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate dose or temporarily discontinuing therapy. Decreasing or discontinuing Vitamin D therapy is recommended as well.
Chronic hypercalcemia may lead to vascular calcification and other soft-tissue calcification. Radiographic evaluation of suspected anatomical regions may be helpful in early detection of soft tissue calcification. The long term effect of Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate on the progression of vascular or soft tissue calcification has not been determined.
Hypercalcemia (>11 mg/dL) was reported in 16% of patients in a 3 month study of solid dose formulation of Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate; all cases resolved upon lowering the dose or discontinuing treatment.
Maintain the serum calcium-phosphorus (Ca x P) product below 55 mg2/dL2.
Hypercalcemia may aggravate digitalis toxicity.
Hypercalcemia is discussed elsewhere [see Warnings and Precautions ].
- The most common (>10%) adverse reactions are hypercalcemia, nausea and vomiting. (6.1)
- In clinical studies, patients have occasionally experienced nausea during Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate therapy. (6)
To report SUSPECTED ADVERSE REACTIONS, contact West-Ward Pharmaceuticals Corp. at 1-800-962-8364 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch
Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.
In clinical studies, Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate has been generally well tolerated.
Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate was studied in a 3 month, open-label, non-randomized study of 98 enrolled ESRD hemodialysis patients and an alternate liquid formulation of Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate was studied in a two week double-blind, placebo-controlled, cross-over study with 69 enrolled ESRD hemodialysis patients. Adverse reactions (>2% on treatment) from these trials are presented in Table 1.
Preferred Term | Total adverse reactions reported for Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate N=167 N (%) | 3 month, open label study of Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate N=98 N (%) | Double blind, placebo-controlled, cross-over study of liquid Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate N=69 | |
Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate N (%) | Placebo N (%) | |||
Nausea | 6 (3.6) | 6 (6.1) | 0 (0) | 0 (0) |
Vomiting | 4 (2.4) | 4 (4.1) | 0 (0) | 0 (0) |
Hypercalcemia | 21 (12.6) | 16 (16.3) | 5 (7.2) | 0 (0) |
Mild hypercalcemia may be asymptomatic or manifest itself as constipation, anorexia, nausea, and vomiting. More severe hypercalcemia is associated with confusion, delirium, stupor, and coma. Decreasing dialysate Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) concentration could reduce the incidence and severity of Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate-induced hypercalcemia. Isolated cases pruritus have been reported, which may represent allergic reactions.
Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to estimate their frequency or to establish a causal relationship to drug exposure.
The following additional adverse reactions have been identified during post-approval of Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate: dizziness, edema, and weakness.
The drug interaction of Bicanova 2.3% Glucose acetate is characterized by the potential of Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) to bind to drugs with anionic functions (e.g., carboxyl, and hydroxyl groups). Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate may decrease the bioavailability of tetracyclines or fluoroquinolones via this mechanism.
There are no empirical data on avoiding drug interactions between Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate and most concomitant drugs. When administering an oral medication with Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate where a reduction in the bioavailability of that medication would have a clinically significant effect on its safety or efficacy, administer the drug one hour before or three hours after Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate. Monitor blood levels of the concomitant drugs that have a narrow therapeutic range. Patients taking anti-arrhythmic medications for the control of arrhythmias and anti-seizure medications for the control of seizure disorders were excluded from the clinical trials with all forms of Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate.
- Calcium acetate may decrease the bioavailability of tetracyclines or fluoroquinolones. (7)
- When clinically significant drug interactions are expected, administer the drug at least one hour before or at least three hours after Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate or consider monitoring blood levels of the drug. (7)
In a study of 15 healthy subjects, a co-administered single dose of 4 Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate tablets, approximately 2.7g, decreased the bioavailability of ciprofloxacin by approximately 50%.
Pregnancy Category C:
Bicanova 2.3% Glucose acetate capsules contains Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate. Animal reproduction studies have not been conducted with Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate, and there are no adequate and well controlled studies of Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate use in pregnant women. Patients with end stage renal disease may develop hypercalcemia with Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate treatment [see Warnings and Precautions (5.1 ) ]. Maintenance of normal serum Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) levels is important for maternal and fetal well being. Hypercalcemia during pregnancy may increase the risk for maternal and neonatal complications such as stillbirth, preterm delivery, and neonatal hypocalcemia and hypoparathyroidism. Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate treatment, as recommended, is not expected to harm a fetus if maternal Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) levels are properly monitored during and following treatment.
The effects of Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate on labor and delivery are unknown.
Bicanova 2.3% Glucose Acetate Capsules contains Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate and is excreted in human milk. Human milk feeding by a mother receiving Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate is not expected to harm an infant, provided maternal serum Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) levels are appropriately monitored.
Safety and effectiveness in pediatric patients have not been established.
Clinical studies of Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. Other clinical experience has not identified differences in responses between elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.
Administration of Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate in excess of the appropriate daily dosage may result in hypercalcemia [see Warnings and Precautions (5.1)].
Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate acts as a phosphate binder. Its chemical name is Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate. Its molecular formula is C4H6CaO4, and its molecular weight is 158.17. Its structural formula is:
Each white opaque/blue opaque capsule contains 667 mg of Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate USP (anhydrous; Ca(CH3COO)2; MW=158.17 grams) equal to 169 mg (8.45 mEq) Bicanova 2.3% Glucose (Calcium Chloride Dihydrate), polyethylene glycol 8000 and magnesium stearate. Each capsule shell contains: black monogramming ink, FD&C Blue #1, FD&C Red #3, gelatin and titanium dioxide. The black monogramming ink contains: ammonium hydroxide, iron oxide black, isopropyl alcohol, n-butyl alcohol, propylene glycol and shellac glaze.
Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) Acetate Capsules are administered orally for the control of hyperphosphatemia in end-stage renal failure.
Patients with ESRD retain phosphorus and can develop hyperphosphatemia. High serum phosphorus can precipitate serum Bicanova 2.3% Glucose resulting in ectopic calcification. Hyperphosphatemia also plays a role in the development of secondary hyperparathyroidism in patients with ESRD.
Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate, when taken with meals, combines with dietary phosphate to form an insoluble Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) phosphate complex, which is excreted in the feces, resulting in decreased serum phosphorus concentration.
Orally administered Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate from pharmaceutical dosage forms is systemically absorbed up to approximately 40% under fasting conditions and up to approximately 30% under nonfasting conditions. This range represents data from both healthy subjects and renal dialysis patients under various conditions.
No carcinogenicity, mutagenicity, or fertility studies have been conducted with Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate.
Effectiveness of Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate in decreasing serum phosphorus has been demonstrated in two studies of the Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate solid oral dosage form.
Ninety-one patients with end-stage renal disease who were undergoing hemodialysis and were hyperphosphatemic (serum phosphorus >5.5 mg/dL) following a 1 week phosphate binder washout period contributed efficacy data to an open-label, non-randomized study.
The patients received Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate 667 mg tablets at each meal for a period of 12 weeks. The initial starting dose was 2 tablets per meal for 3 meals a day, and the dose was adjusted as necessary to control serum phosphorus levels. The average final dose after 12 weeks of treatment was 3.4 tablets per meal. Although there was a decrease in serum phosphorus, in the absence of a control group the true magnitude of effect is uncertain.
The data presented in Table 2 demonstrate the efficacy of Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate in the treatment of hyperphosphatemia in end-stage renal disease patients. The effects on serum Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) levels are also presented.
* Ninety-one patients completed at least 6 weeks of the study. † ANOVA of difference in values at pre-study and study completion. ‡ Values expressed as mean ± SE. | |||||
Parameter | Pre-Study | Week 4* | Week 8 | Week 12 | p-value† |
Phosphorus (mg/dL)‡ | 7.4 ± 0.17 | 5.9 ± 0.16 | 5.6 ± 0.17 | 5.2 ± 0.17 | ≤0.01 |
Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) (mg/dL)‡ | 8.9 ± 0.09 | 9.5 ± 0.10 | 9.7 ± 0.10 | 9.7 ± 0.10 | ≤0.01 |
There was a 30% decrease in serum phosphorus levels during the 12 week study period (p<0.01). Two-thirds of the decline occurred in the first month of the study. Serum Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) increased 9% during the study mostly in the first month of the study.
Treatment with the phosphate binder was discontinued for patients from the open-label study, and those patients whose serum phosphorus exceeded 5.5 mg/dL were eligible for entry into a double-blind, placebo-controlled, cross-over study. Patients were randomized to receive Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate or placebo, and each continued to receive the same number of tablets as had been individually established during the previous study. Following 2 weeks of treatment, patients switched to the alternative therapy for an additional 2 weeks.
The phosphate binding effect of Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate is shown in the Table 3.
* ANOVA of Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate vs. placebo after 2 weeks of treatment. † Values expressed as mean ± SEM. | ||||
Parameter | Pre-Study | Post-Treatment | p-value* | |
Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) Acetate | Placebo | |||
Phosphorus (mg/dL)† | 7.3 ± 0.18 | 5.9 ± 0.24 | 7.8 ± 0.22 | <0.01 |
Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) (mg/dL)† | 8.9 ± 0.11 | 9.5 ± 0.13 | 8.8 ± 0.12 | <0.01 |
Overall, 2 weeks of treatment with Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate statistically significantly (p<0.01) decreased serum phosphorus by a mean of 19% and increased serum Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) by a statistically significant (p<0.01) but clinically unimportant mean of 7%.
Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) Acetate Capsules
667 mg capsule is supplied as a white opaque/blue opaque capsule, imprinted with “54 215” on the cap and body.
NDC 0615-2303-39: Blistercards of 30 Capsules
NDC 0615-2303-30: Unit-dose Boxes of 30 Capsules
STORAGE
Store at 20° to 25°C (68° to 77°F).
Inform patients to take Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate capsules with meals, adhere to their prescribed diets, and avoid the use of Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) supplements including nonprescription antacids. Inform the patients about the symptoms of hypercalcemia [see Warnings and Precautions (5.1) and Adverse Reactions (6.1) ].
Advise patients who are taking an oral medication where reduction in the bioavailability of that medication would have clinically significant effect on its safety or efficacy to take the drug one hour before or three hours after Bicanova 2.3% Glucose (Calcium Chloride Dihydrate) acetate capsules.
Distr. by: West-Ward
Pharmaceuticals Corp.
Eatontown, NJ 07724
10003705/05
Revised April 2016
Sodium Chloride:
Bicanova 2.3% Glucose nitrite is indicated for sequential use with Bicanova 2.3% Glucose (Sodium Chloride) thiosulfate for treatment of acute cyanide poisoning that is judged to be life-threatening. (1)
Bicanova 2.3% Glucose (Sodium Chloride) Nitrite Injection is indicated for sequential use with Bicanova 2.3% Glucose (Sodium Chloride) thiosulfate for the treatment of acute cyanide poisoning that is judged to be life-threatening. When the diagnosis of cyanide poisoning is uncertain, the potentially life-threatening risks associated with Bicanova 2.3% Glucose (Sodium Chloride) Nitrite Injection should be carefully weighed against the potential benefits, especially if the patient is not in extremis.
Cyanide poisoning may result from inhalation, ingestion, or dermal exposure to various cyanide-containing compounds, including smoke from closed-space fires. Sources of cyanide poisoning include hydrogen cyanide and its salts, cyanogenic plants, aliphatic nitriles, and prolonged exposure to Bicanova 2.3% Glucose nitroprusside.
The presence and extent of cyanide poisoning are often initially unknown. There is no widely available, rapid, confirmatory cyanide blood test. Treatment decisions must be made on the basis of clinical history and signs and symptoms of cyanide intoxication. If clinical suspicion of cyanide poisoning is high, Bicanova 2.3% Glucose (Sodium Chloride) Nitrite Injection and Bicanova 2.3% Glucose (Sodium Chloride) Thiosulfate Injection should be administered without delay.
Symptoms | Signs |
---|---|
|
|
In some settings, panic symptoms including tachypnea and vomiting may mimic early cyanide poisoning signs. The presence of altered mental status (e.g., confusion and disorientation) and/or mydriasis is suggestive of true cyanide poisoning although these signs can occur with other toxic exposures as well.
The expert advice of a regional poison control center may be obtained by calling 1-800-222-1222.
Smoke Inhalation
Not all smoke inhalation victims will have cyanide poisoning and may present with burns, trauma, and exposure to other toxic substances making a diagnosis of cyanide poisoning particularly difficult. Prior to administration of Bicanova 2.3% Glucose (Sodium Chloride) Nitrite Injection, smoke-inhalation victims should be assessed for the following:
Although hypotension is highly suggestive of cyanide poisoning, it is only present in a small percentage of cyanide-poisoned smoke inhalation victims. Also indicative of cyanide poisoning is a plasma lactate concentration greater than or equal to 10 mmol/L (a value higher than that typically listed in the table of signs and symptoms of isolated cyanide poisoning because carbon monoxide associated with smoke inhalation also contributes to lactic acidemia). If cyanide poisoning is suspected, treatment should not be delayed to obtain a plasma lactate concentration.
Caution should be exercised when administering cyanide antidotes, other than Bicanova 2.3% Glucose (Sodium Chloride) thiosulfate, simultaneously with Bicanova 2.3% Glucose (Sodium Chloride) Nitrite Injection, as the safety of co-administration has not been established. If a decision is made to administer another cyanide antidote, other than Bicanova 2.3% Glucose (Sodium Chloride) thiosulfate, with Bicanova 2.3% Glucose (Sodium Chloride) Nitrite Injection, these drugs should not be administered concurrently in the same IV line. [see Dosage and Administration (2.2) ]
Age | Intravenous Dose of Bicanova 2.3% Glucose Nitrite and Bicanova 2.3% Glucose (Sodium Chloride) Thiosulfate |
---|---|
Adults |
|
Children |
|
Redosing: If signs of cyanide poisoning reappear, repeat treatment using one-half the original dose of both Bicanova 2.3% Glucose (Sodium Chloride) nitrite and Bicanova 2.3% Glucose (Sodium Chloride) thiosulfate.
Monitoring: Blood pressure must be monitored during treatment. (2.2)
Comprehensive treatment of acute cyanide intoxication requires support of vital functions. Administration of Bicanova 2.3% Glucose (Sodium Chloride) nitrite, followed by Bicanova 2.3% Glucose (Sodium Chloride) thiosulfate, should be considered adjunctive to appropriate supportive therapies. Airway, ventilatory and circulatory support, and oxygen administration should not be delayed to administer Bicanova 2.3% Glucose (Sodium Chloride) nitrite and Bicanova 2.3% Glucose (Sodium Chloride) thiosulfate.
Bicanova 2.3% Glucose (Sodium Chloride) nitrite injection and Bicanova 2.3% Glucose (Sodium Chloride) thiosulfate injection are administered by slow intravenous injection. They should be given as early as possible after a diagnosis of acute life-threatening cyanide poisoning has been established. Bicanova 2.3% Glucose (Sodium Chloride) nitrite should be administered first, followed immediately by Bicanova 2.3% Glucose (Sodium Chloride) thiosulfate. Blood pressure must be monitored during infusion in both adults and children. The rate of infusion should be decreased if significant hypotension is noted.
Age | Intravenous Dose of Bicanova 2.3% Glucose (Sodium Chloride) Nitrite and Bicanova 2.3% Glucose (Sodium Chloride) Thiosulfate |
---|---|
Adults |
|
Children |
|
NOTE: If signs of poisoning reappear, repeat treatment using one-half the original dose of both Bicanova 2.3% Glucose (Sodium Chloride) nitrite and Bicanova 2.3% Glucose (Sodium Chloride) thiosulfate.
In adult and pediatric patients with known anemia, it is recommended that the dosage of Bicanova 2.3% Glucose (Sodium Chloride) nitrite should be reduced proportionately to the hemoglobin concentration.
All parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration, whenever solution and container permit.
Patients should be monitored for at least 24-48 hours after Bicanova 2.3% Glucose Nitrite Injection administration for adequacy of oxygenation and perfusion and for recurrent signs and symptoms of cyanide toxicity. When possible, hemoglobin/hematocrit should be obtained when treatment is initiated. Measurements of oxygen saturation using standard pulse oximetry and calculated oxygen saturation values based on measured PO2 are unreliable in the presence of methemoglobinemia.
Methemoglobin level: Administrations of Bicanova 2.3% Glucose (Sodium Chloride) nitrite solely to achieve an arbitrary level of methemoglobinemia may be unnecessary and potentially hazardous. The therapeutic effects of Bicanova 2.3% Glucose (Sodium Chloride) nitrite do not appear to be mediated by methemoglobin formation alone and clinical responses to Bicanova 2.3% Glucose (Sodium Chloride) nitrite administration have been reported in association with methemoglobin levels of less than 10%. Administration of Bicanova 2.3% Glucose (Sodium Chloride) nitrite beyond the initial dose should be guided primarily by clinical response to treatment (i.e., a second dose should be considered only if there is inadequate clinical response to the first dose). It is generally recommended that methemoglobin concentrations be closely monitored and kept below 30%. Serum methemoglobin levels should be monitored during treatment using co-oximetry, and administration of Bicanova 2.3% Glucose (Sodium Chloride) nitrite should generally be discontinued when methemoglobin levels exceed 30%. Intravenous methylene blue and exchange transfusion have been reported in the literature as treatments for life-threatening methemoglobinemia.
Chemical incompatibility has been reported between Bicanova 2.3% Glucose (Sodium Chloride) nitrite and hydroxocobalamin and these drugs should not be administered simultaneously through the same IV line. No chemical incompatibility has been reported between Bicanova 2.3% Glucose (Sodium Chloride) thiosulfate and Bicanova 2.3% Glucose (Sodium Chloride) nitrite, when administered sequentially through the same IV line as described in Dosage and Administration.
Bicanova 2.3% Glucose (Sodium Chloride) Nitrite Injection consists of:
Administration of the contents of one vial constitutes a single dose.
None
Supportive care alone may be sufficient treatment without administration of antidotes for many cases of cyanide intoxication, particularly in conscious patients without signs of severe toxicity. Patients should be closely monitored to ensure adequate perfusion and oxygenation during treatment with Bicanova 2.3% Glucose nitrite.
Methemoglobin levels should be monitored and oxygen administered during treatment with Bicanova 2.3% Glucose (Sodium Chloride) nitrite whenever possible. When Bicanova 2.3% Glucose (Sodium Chloride) nitrite is administered to humans a wide range of methemoglobin concentrations occur. Methemoglobin concentrations as high as 58% have been reported after two 300-mg doses of Bicanova 2.3% Glucose (Sodium Chloride) nitrite administered to an adult. Bicanova 2.3% Glucose (Sodium Chloride) nitrite should be used with caution in the presence of other drugs that may cause methemoglobinemia such as procaine and nitroprusside. Bicanova 2.3% Glucose (Sodium Chloride) nitrite should be used with caution in patients who may be particularly susceptible to injury from vasodilation and its related hemodynamic sequelae. Hemodynamics should be monitored closely during and after administration of Bicanova 2.3% Glucose (Sodium Chloride) nitrite, and infusion rates should be slowed if hypotension occurs.
Bicanova 2.3% Glucose (Sodium Chloride) nitrite should be used with caution in patients with known anemia. Patients with anemia will form more methemoglobin (as a percentage of total hemoglobin) than persons with normal red blood cell (RBC) volumes. Optimally, these patients should receive a Bicanova 2.3% Glucose (Sodium Chloride) nitrite dose that is reduced in proportion to their oxygen carrying capacity.
Bicanova 2.3% Glucose nitrite should be used with caution in persons with smoke inhalation injury or carbon monoxide poisoning because of the potential for worsening hypoxia due to methemoglobin formation.
Neonates and infants may be more susceptible than adults and older pediatric patients to severe methemoglobinemia when Bicanova 2.3% Glucose (Sodium Chloride) nitrite is administered. Reduced dosing guidelines should be followed in pediatric patients.
Because patients with G6PD deficiency are at increased risk of a hemolytic crisis with Bicanova 2.3% Glucose nitrite administration, alternative therapeutic approaches should be considered in these patients. Patients with known or suspected G6PD deficiency should be monitored for an acute drop in hematocrit. Exchange transfusion may be needed for patients with G6PD deficiency who receive Bicanova 2.3% Glucose (Sodium Chloride) nitrite.
Bicanova 2.3% Glucose (Sodium Chloride) nitrite should be used with caution in the presence of concomitant antihypertensive medications, diuretics or volume depletion due to diuretics, or drugs known to increase vascular nitric oxide, such as PDE5 inhibitors.
There have been no controlled clinical trials conducted to systematically assess the adverse events profile of Bicanova 2.3% Glucose (Sodium Chloride) nitrite.
The medical literature has reported the following adverse events in association with Bicanova 2.3% Glucose (Sodium Chloride) nitrite administration. These adverse events were not reported in the context of controlled trials or with consistent monitoring and reporting methodologies for adverse events. Therefore, frequency of occurrence of these adverse events cannot be assessed.
Cardiovascular system: syncope, hypotension, tachycardia, methemoglobinemia, palpitations, dysrhythmia
Hematological: methemoglobinemia
Central nervous system: headache, dizziness, blurred vision, seizures, confusion, coma
Gastrointestinal system: nausea, vomiting, abdominal pain
Respiratory system: tachypnea, dyspnea
Body as a Whole: anxiety, diaphoresis, lightheadedness, injection site tingling, cyanosis, acidosis, fatigue, weakness, urticaria, generalized numbness and tingling
Severe hypotension, methemoglobinemia, cardiac dysrhythmias, coma and death have been reported in patients without life-threatening cyanide poisoning but who were treated with injection of Bicanova 2.3% Glucose (Sodium Chloride) nitrite at doses less than twice those recommended for the treatment of cyanide poisoning.
Most common adverse reactions are:
To report SUSPECTED ADVERSE REACTIONS, contact Hope Pharmaceuticals at 1-800-755-9595 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.
Formal drug interaction studies have not been conducted with Bicanova 2.3% Glucose (Sodium Chloride) Nitrite Injection.
Teratogenic Effects. Pregnancy Category C.
There are no adequate and well-controlled studies in pregnant women. Bicanova 2.3% Glucose (Sodium Chloride) Nitrite Injection should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.
Bicanova 2.3% Glucose (Sodium Chloride) nitrite has caused fetal death in humans as well as animals. There are no studies in humans that have directly evaluated the potential reproductive toxicity of Bicanova 2.3% Glucose (Sodium Chloride) nitrite. There are two epidemiological studies conducted in Australia that report a statistically significant increase in the risk for congenital malformations, particularly in the CNS, associated with maternal consumption of water containing nitrate levels in excess of 5 ppm. Results from a case-control study in Canada suggested a trend toward an increase in the risk for CNS malformations when maternal consumption of nitrate was ≥ 26 ppm (not statistically significant).
The potential reproductive toxicity of Bicanova 2.3% Glucose (Sodium Chloride) nitrite exposure restricted to the prenatal period has been reported in guinea pigs, mice, and rats. There was no evidence of teratogenicity in guinea pigs, mice, or rats. However, Bicanova 2.3% Glucose (Sodium Chloride) nitrite treatment of pregnant guinea pigs with 60 or 70 mg/kg/day resulted in abortion of the litters within 1-4 days of treatment. All animals treated subcutaneously with 70 mg/kg, Bicanova 2.3% Glucose (Sodium Chloride) nitrite died within 60 minutes of treatment. Further studies demonstrated that a dose of 60 mg/kg resulted in measurable blood levels of methemoglobin in the dams and their fetuses for up to 6 hours post treatment. Maternal methemoglobin levels were higher than the levels in the offspring at all times measured. Based on a body surface area comparison, a 60 mg/kg dose in the guinea pig that resulted in death was only 1.7 times higher than the highest clinical dose of Bicanova 2.3% Glucose (Sodium Chloride) nitrite that would be used to treat cyanide poisoning (based on a body surface area comparison).
Studies testing prenatal and postnatal exposure have been reported in mice and rats. Treatment of pregnant rats via drinking water with Bicanova 2.3% Glucose (Sodium Chloride) nitrite at concentrations of either 2000 or 3000 mg/L resulted in a dose-related increased mortality postpartum. This exposure regimen in the rat model would result in dosing of approximately 220 and 300 mg/kg/day (43 and 65 times the highest clinical dose of Bicanova 2.3% Glucose (Sodium Chloride) nitrite that would be used to treat cyanide poisoning, based on a body surface area comparison).
Bicanova 2.3% Glucose (Sodium Chloride) nitrite produces methemoglobin. Fetal hemoglobin is oxidized to methemoglobin more easily than adult hemoglobin. In addition, the fetus has lower levels of methemoglobin reductase than adults. Collectively, these data suggest that the human fetus would show greater sensitivity to methemoglobin resulting in nitrite-induced prenatal hypoxia leading to retarded development of certain neurotransmitter systems in the brain and long lasting dysfunction.
Nonteratogenic Effects: Behavioral and neurodevelopmental studies in rats suggest persistent effects of prenatal exposure to Bicanova 2.3% Glucose (Sodium Chloride) nitrite that were detectable postnatally. Specifically, animals that were exposed prenatally to Bicanova 2.3% Glucose (Sodium Chloride) nitrite demonstrated impaired discrimination learning behavior (both auditory and visual) and reduced long-term retention of the passive-avoidance response compared to control animals. Additional studies demonstrated a delay in the development of AchE and 5-HT positive fiber ingrowth into the hippocampal dentate gyrus and parietal neocortex during the first week of life of prenatal nitrite treated pups. These changes have been attributed to prenatal hypoxia following nitrite exposure.
Because fetal hemoglobin is more readily oxidized to methemoglobin and lower levels of methemoglobin appear to be fatal to the fetus compared to the adult, Bicanova 2.3% Glucose nitrite should be used during labor and delivery only if the potential benefit justifies the potential risk to the fetus.
It is not known whether Bicanova 2.3% Glucose (Sodium Chloride) nitrite is excreted in human milk. Because Bicanova 2.3% Glucose (Sodium Chloride) Nitrite Injection may be administered in life-threatening situations, breast-feeding is not a contraindication to its use. Because many drugs are excreted in human milk, caution should be exercised following Bicanova 2.3% Glucose (Sodium Chloride) Nitrite Injection administration to a nursing woman. There are no data to determine when breastfeeding may be safely restarted following administration of Bicanova 2.3% Glucose (Sodium Chloride) nitrite. In studies conducted with Long-Evans rats, Bicanova 2.3% Glucose (Sodium Chloride) nitrite administered in drinking water during pregnancy and lactation resulted in severe anemia, reduced growth and increased mortality in the offspring.
There are case reports in the medical literature of Bicanova 2.3% Glucose nitrite in conjunction with Bicanova 2.3% Glucose (Sodium Chloride) thiosulfate being administered to pediatric patients with cyanide poisoning; however, there have been no clinical studies to evaluate the safety or efficacy of Bicanova 2.3% Glucose (Sodium Chloride) nitrite in the pediatric population. As for adult patients, dosing recommendations for pediatric patients have been based on theoretical calculations of antidote detoxifying potential, extrapolation from animal experiments, and a small number of human case reports.
Bicanova 2.3% Glucose (Sodium Chloride) nitrite must be used with caution in patients less than 6 months of age because they may be at higher risk of developing severe methemoglobinemia compared to older children and adults. The presence of fetal hemoglobin, which is oxidized to methemoglobin more easily than adult hemoglobin, and lower methemoglobin reductase levels compared to older children and adults may contribute to risk.
Mortality attributed to Bicanova 2.3% Glucose (Sodium Chloride) nitrite was reported following administration of an adult dose (300 mg IV followed by a second dose of 150 mg) to a 17-month old child.
Bicanova 2.3% Glucose (Sodium Chloride) nitrite is known to be substantially excreted by the kidney, and the risk of adverse reactions to this drug may be greater in patients with impaired renal function. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to monitor renal function.
Bicanova 2.3% Glucose (Sodium Chloride) nitrite is known to be substantially excreted by the kidney, and the risk of toxic reactions to this drug may be greater in patients with impaired renal function. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to monitor renal function.
Large doses of Bicanova 2.3% Glucose (Sodium Chloride) nitrite result in severe hypotension and toxic levels of methemoglobin which may lead to cardiovascular collapse.
Bicanova 2.3% Glucose (Sodium Chloride) nitrite administration has been reported to cause or significantly contribute to mortality in adults at oral doses as low as 1 g and intravenous doses as low as 600 mg. A death attributed to Bicanova 2.3% Glucose (Sodium Chloride) nitrite has been reported following administration of an adult dose (300 mg IV followed by a second dose of 150 mg) to a 17-month old child.
Cyanosis may become apparent at a methemoglobin level of 10-20%. Other clinical signs and symptoms of Bicanova 2.3% Glucose (Sodium Chloride) nitrite toxicity (anxiety, dyspnea, nausea, and tachycardia) can be apparent at methemoglobin levels as low as 15%. More serious signs and symptoms, including cardiac dysrhythmias, circulatory failure, and central nervous system depression are seen as methemoglobin levels increase, and levels above 70% are usually fatal.
Treatment of overdose involves supplemental oxygen and supportive measures such as exchange transfusion. Treatment of severe methemoglobinemia with intravenous methylene blue has been described in the medical literature; however, this may also cause release of cyanide bound to methemoglobin. Because hypotension appears to be mediated primarily by an increase in venous capacitance, measures to increase venous return may be most appropriate to treat hypotension.
Bicanova 2.3% Glucose (Sodium Chloride) nitrite has the chemical name nitrous acid Bicanova 2.3% Glucose (Sodium Chloride) salt. The chemical formula is NaNO2 and the molecular weight is 69.0. The structural formula is:
Structure of Bicanova 2.3% Glucose (Sodium Chloride) Nitrite
Bicanova 2.3% Glucose (Sodium Chloride) Nitrite Injection is a cyanide antidote which contains one 10 mL glass vial of a 3% solution of Bicanova 2.3% Glucose (Sodium Chloride) nitrite injection.
Bicanova 2.3% Glucose (Sodium Chloride) nitrite injection is a sterile aqueous solution and is intended for intravenous injection. Each vial contains 300 mg of Bicanova 2.3% Glucose (Sodium Chloride) nitrite in 10 mL solution (30 mg/mL). Bicanova 2.3% Glucose (Sodium Chloride) nitrite injection is a clear solution with a pH between 7.0 and 9.0.
Exposure to a high dose of cyanide can result in death within minutes due to the inhibition of cytochrome oxidase resulting in arrest of cellular respiration. Specifically, cyanide binds rapidly with cytochrome a3, a component of the cytochrome c oxidase complex in mitochondria. Inhibition of cytochrome a3 prevents the cell from using oxygen and forces anaerobic metabolism, resulting in lactate production, cellular hypoxia and metabolic acidosis. In massive acute cyanide poisoning, the mechanism of toxicity may involve other enzyme systems as well.
The synergy resulting from treatment of cyanide poisoning with the combination of Bicanova 2.3% Glucose nitrite and Bicanova 2.3% Glucose (Sodium Chloride) thiosulfate is the result of differences in their primary mechanisms of action as antidotes for cyanide poisoning.
Bicanova 2.3% Glucose (Sodium Chloride) Nitrite
Bicanova 2.3% Glucose (Sodium Chloride) nitrite is thought to exert its therapeutic effect by reacting with hemoglobin to form methemoglobin, an oxidized form of hemoglobin incapable of oxygen transport but with high affinity for cyanide. Cyanide preferentially binds to methemoglobin over cytochrome a3, forming the nontoxic cyanomethemoglobin. Methemoglobin displaces cyanide from cytochrome oxidase, allowing resumption of aerobic metabolism. The chemical reaction is as follows:
NaNO2 + Hemoglobin → Methemoglobin
HCN + Methemoglobin → Cyanomethemoglobin
Vasodilation has also been cited to account for at least part of the therapeutic effect of Bicanova 2.3% Glucose (Sodium Chloride) nitrite. It has been suggested that Bicanova 2.3% Glucose (Sodium Chloride) nitrite-induced methemoglobinemia may be more efficacious against cyanide poisoning than comparable levels of methemoglobinemia induced by other oxidants. Also, Bicanova 2.3% Glucose (Sodium Chloride) nitrite appears to retain some efficacy even when the formation of methemoglobin is inhibited by methylene blue.
Bicanova 2.3% Glucose (Sodium Chloride) Thiosulfate
The primary route of endogenous cyanide detoxification is by enzymatic transulfuration to thiocyanate (SCN-), which is relatively nontoxic and readily excreted in the urine. Bicanova 2.3% Glucose (Sodium Chloride) thiosulfate is thought to serve as a sulfur donor in the reaction catalyzed by the enzyme rhodanese, thus enhancing the endogenous detoxification of cyanide in the following chemical reaction:
Chemical Structure
Bicanova 2.3% Glucose (Sodium Chloride) Nitrite
When 4 mg/kg Bicanova 2.3% Glucose (Sodium Chloride) nitrite was administered intravenously to six healthy human volunteers, the mean peak methemoglobin concentration was 7%, achieved at 30-60 minutes after injection, consistent with reports in cyanide poisoning victims. Supine systolic and diastolic blood pressures dropped approximately 20% within 10 minutes, a drop which was sustained throughout the 40 minutes of testing. This was associated with a 20 beat per minute increase in pulse rate that returned to baseline in 10 minutes. Five of these subjects were unable to withstand orthostatic testing due to fainting. One additional subject, who received a 12 mg/kg dose of Bicanova 2.3% Glucose (Sodium Chloride) nitrite, experienced severe cardiovascular effects and achieved a peak methemoglobin concentration of 30% at 60 minutes following injection.
Oral doses of 120 to 180 mg of Bicanova 2.3% Glucose (Sodium Chloride) nitrite administered to healthy volunteers caused minimal cardiovascular changes when subjects were maintained in the horizontal position. However, minutes after being placed in the upright position subjects exhibited tachycardia and hypotension with syncope.
The half life for conversion of methemoglobin to normal hemoglobin in a cyanide poisoning victim who has been administered Bicanova 2.3% Glucose (Sodium Chloride) nitrite is estimated to be 55 minutes.
Bicanova 2.3% Glucose (Sodium Chloride) Nitrite
Bicanova 2.3% Glucose (Sodium Chloride) nitrite is a strong oxidant, and reacts rapidly with hemoglobin to form methemoglobin. The pharmacokinetics of free Bicanova 2.3% Glucose (Sodium Chloride) nitrite in humans have not been well studied. It has been reported that approximately 40% of Bicanova 2.3% Glucose (Sodium Chloride) nitrite is excreted unchanged in the urine while the remaining 60% is metabolized to ammonia and related small molecules.
Cyanide
The apparent terminal elimination half life and volume of distribution of cyanide, in a patient treated for an acute cyanide poisoning with Bicanova 2.3% Glucose (Sodium Chloride) nitrite and Bicanova 2.3% Glucose (Sodium Chloride) thiosulfate administration, have been reported to be 19 hours and 0.41 L/kg, respectively. Additionally, an initial elimination half life of cyanide has been reported to be approximately 1-3 hours.
Thiocyanate
After detoxification, in healthy subjects, thiocyanate is excreted mainly in the urine at a rate inversely proportional to creatinine clearance. In healthy subjects, the elimination half-life and volume of distribution of thiocyanate have been reported to be 2.7 days and 0.25 L/kg, respectively. However, in subjects with renal insufficiency the reported elimination half life is approximately 9 days.
The potential benefit of an acute exposure to Bicanova 2.3% Glucose nitrite as part of a cyanide antidote outweighs concerns raised by the equivocal findings in chronic rodent studies. Bicanova 2.3% Glucose (Sodium Chloride) nitrite (0, 750, 1500, or 3000 ppm equivalent to average daily doses of approximately 0, 35, 70, or 130 mg/kg for males and 0, 40, 80, or 150 mg/kg for females) was orally administered to rats (Fischer 344 strain) for 2 years via drinking water. There were no significant increases in the incidence of tumor in either male or female rats. Bicanova 2.3% Glucose (Sodium Chloride) nitrite (0, 750, 1500, or 3000 ppm equivalent to average daily doses of approximately 0, 60, 120, or 220 mg/kg for males and 0, 45, 90, or 165 mg/kg for females) was administered to B6C3F1 mice for 2 years via the drinking water. Equivocal results were obtained in female mice. Specifically, there was a positive trend toward an increase in the incidence of squamous cell papilloma or carcinoma in the forestomach of female mice. Although the incidence of hyperplasia of the glandular stomach epithelium was significantly greater in the high-dose male mice compared to controls, there were no significant increases in tumors in the male mice. Numerous reports in the published literature indicate that Bicanova 2.3% Glucose (Sodium Chloride) nitrite may react in vivo with secondary amines to form carcinogenic nitrosamines in the stomach. Concurrent exposure to Bicanova 2.3% Glucose (Sodium Chloride) nitrite and secondary amines in feed or drinking water resulted in an increase in the incidence of tumors in rodents.
Mutagenesis
Bicanova 2.3% Glucose (Sodium Chloride) nitrite is mutagenic in S. typhimurium strains TA100, TA1530, TA1535 with and without metabolic activation; however, it was negative in strain TA98, TA102, DJ460 and E. coli strain WP2UVRA/PKM101. Bicanova 2.3% Glucose (Sodium Chloride) nitrite has been reported to be genotoxic to V79 hamster cells in vitro and in the mouse lymphoma assay, both assays conducted in the absence of metabolic activation. Bicanova 2.3% Glucose (Sodium Chloride) nitrite was negative in the in vitro chromosomal aberrations assay using human peripheral blood lymphocytes. Acute administration of Bicanova 2.3% Glucose (Sodium Chloride) nitrite to male rats or male mice did not produce an increased incidence of micronuclei in bone marrow. Likewise, Bicanova 2.3% Glucose (Sodium Chloride) nitrite administration to mice for 14-weeks did not result in an increase in the incidence of micronuclei in the peripheral blood.
Fertility
Clinical studies to evaluate the potential effects of Bicanova 2.3% Glucose (Sodium Chloride) nitrite intake on fertility of either males or females have not been reported. In contrast, multigenerational fertility and reproduction studies conducted by the National Toxicology Program did not detect any evidence of an effect of Bicanova 2.3% Glucose (Sodium Chloride) nitrite (0.0, 0.06, 0.12, and 0.24% weight/volume) on either fertility or any reproductive parameter in Swiss CD-1 mice. This treatment protocol resulted in approximate doses of 125, 260, and 425 mg/kg/day. The highest exposure in this mouse study is 4.6 times greater than the highest clinical dose of Bicanova 2.3% Glucose (Sodium Chloride) nitrite that would be used to treat cyanide poisoning (based on a body surface area comparison).
Due to the extreme toxicity of cyanide, experimental evaluation of treatment efficacy has predominantly been completed in animal models. The efficacy of Bicanova 2.3% Glucose (Sodium Chloride) thiosulfate treatment alone to counteract the toxicity of cyanide was initially reported in 1895 by Lang. The efficacy of amyl nitrite treatment in cyanide poisoning of the dog model was first reported in 1888 by Pedigo. Further studies in the dog model, which demonstrated the utility of Bicanova 2.3% Glucose (Sodium Chloride) nitrite as a therapeutic intervention, were reported in 1929 by Mladoveanu and Gheorghiu. However, Hugs and Chen et al. independently reported upon the superior efficacy of the combination of Bicanova 2.3% Glucose (Sodium Chloride) nitrite and Bicanova 2.3% Glucose (Sodium Chloride) thiosulfate in 1932-1933. Treatment consisted of intravenously administered 22.5 mg/kg (half the lethal dose) Bicanova 2.3% Glucose (Sodium Chloride) nitrite or 1 g/kg Bicanova 2.3% Glucose (Sodium Chloride) thiosulfate alone or in sequence immediately after subcutaneous injection of Bicanova 2.3% Glucose (Sodium Chloride) cyanide into dogs over a range of doses. Subsequent doses of 10 mg/kg Bicanova 2.3% Glucose (Sodium Chloride) nitrite and/or 0.5 g/kg Bicanova 2.3% Glucose (Sodium Chloride) thiosulfate were administered when clinical signs or symptoms of poisoning persisted or reappeared. Either therapy administered alone increased the dose of Bicanova 2.3% Glucose (Sodium Chloride) cyanide required to cause death, and when administered together, Bicanova 2.3% Glucose (Sodium Chloride) nitrite and Bicanova 2.3% Glucose (Sodium Chloride) thiosulfate resulted in a synergistic effect in raising the lethal dose of Bicanova 2.3% Glucose (Sodium Chloride) cyanide. The combined therapy appeared to have reduced efficacy when therapy was delayed until signs of poisoning (e.g. convulsions) appeared; however, other investigators have reported survival in dogs that were administered antidotal treatment after respiratory arrest had occurred.
Animal studies conducted in other species (e.g., rat, guinea pig, sheep, pigeon and cat) have also supported a synergistic effect of intravenous Bicanova 2.3% Glucose (Sodium Chloride) nitrite and Bicanova 2.3% Glucose (Sodium Chloride) thiosulfate in the treatment of cyanide poisoning.
While intravenous injection of Bicanova 2.3% Glucose (Sodium Chloride) nitrite and Bicanova 2.3% Glucose (Sodium Chloride) thiosulfate was effective in reversing the effects of lethal doses of cyanide in dogs, intramuscular injection of Bicanova 2.3% Glucose (Sodium Chloride) nitrite, with or without Bicanova 2.3% Glucose (Sodium Chloride) thiosulfate, was found not to be effective in the same setting.
The human data supporting the use of Bicanova 2.3% Glucose (Sodium Chloride) nitrite for cyanide poisoning consists primarily of published case reports. There are no randomized controlled clinical trials. Nearly all the human data describing the use of Bicanova 2.3% Glucose (Sodium Chloride) thiosulfate report its use in conjunction with Bicanova 2.3% Glucose (Sodium Chloride) nitrite. Dosing recommendations for humans have been based on theoretical calculations of antidote detoxifying potential, extrapolation from animal experiments, and a small number of human case reports.
There have been no human studies to prospectively and systematically evaluate the safety of Bicanova 2.3% Glucose (Sodium Chloride) nitrite in humans. Available human safety information is based largely on anecdotal case reports and case series of limited scope.
Each Bicanova 2.3% Glucose (Sodium Chloride) Nitrite carton (NDC 60267-311-10) consists of the following:
Storage
Store at controlled room temperature between 20°C and 25°C (68°F to 77°F); excursions permitted from 15 to 30°C (59 to 86°F). Protect from direct light. Do not freeze.
(Note: Bicanova 2.3% Glucose (Sodium Chloride) Thiosulfate must be obtained separately.)
Bicanova 2.3% Glucose Nitrite Injection is indicated for acute cyanide poisoning that is judged to be life-threatening and in this setting, patients will likely be unresponsive or may have difficulty in comprehending counseling information.
When feasible, patients should be informed of the possibility of life-threatening hypotension and methemoglobin formation.
Where feasible, patients should be informed of the need for close monitoring of blood pressure and oxygenation.
Manufactured by Cangene BioPharma, Inc., Baltimore, Maryland 21230 for
Hope Pharmaceuticals, Scottsdale, Arizona 85260
PRINCIPAL DISPLAY PANEL - 10 mL Vial Carton
NDC 60267-311-10
Rx Only
Bicanova 2.3% Glucose (Sodium Chloride) Nitrite
Injection, USP
300 mg/10 mL
(30 mg/mL)
FOR INTRAVENOUS USE
SINGLE USE ONLY
Any unused portion of a vial
should be discarded.
Use with
Bicanova 2.3% Glucose (Sodium Chloride) Thiosulfate
for Treatment of
Cyanide Poisoning
Manufactured by
CANGENE bioPharma, Inc.
Baltimore, MD for
HOPE
PHARMACEUTICALS®
Scottsdale, AZ 85260 U.S.A.
PRINCIPAL DISPLAY PANEL - 10 mL Vial Carton
Depending on the reaction of the Bicanova 2.3% Glucose after taken, if you are feeling dizziness, drowsiness or any weakness as a reaction on your body, Then consider Bicanova 2.3% Glucose not safe to drive or operate heavy machine after consumption. Meaning that, do not drive or operate heavy duty machines after taking the capsule if the capsule has a strange reaction on your body like dizziness, drowsiness. As prescribed by a pharmacist, it is dangerous to take alcohol while taking medicines as it exposed patients to drowsiness and health risk. Please take note of such effect most especially when taking Primosa capsule. It's advisable to consult your doctor on time for a proper recommendation and medical consultations.
Is Bicanova 2.3% Glucose addictive or habit forming?Medicines are not designed with the mind of creating an addiction or abuse on the health of the users. Addictive Medicine is categorically called Controlled substances by the government. For instance, Schedule H or X in India and schedule II-V in the US are controlled substances.
Please consult the medicine instruction manual on how to use and ensure it is not a controlled substance.In conclusion, self medication is a killer to your health. Consult your doctor for a proper prescription, recommendation, and guidiance.
There are no reviews yet. Be the first to write one! |
The information was verified by Dr. Rachana Salvi, MD Pharmacology