Kivexa

Rating: 5 - 1 review(s)
How often in a day do you take medicine? How many times?

Kivexa uses


1 INDICATIONS AND USAGE

Kivexa, in combination with other antiretroviral agents, is indicated for the treatment of human immunodeficiency virus type 1 (HIV‑1) infection.

Kivexa, a combination of abacavir and lamivudine, both nucleoside analogue HIV-1 reverse transcriptase inhibitors, is indicated in combination with other antiretroviral agents for the treatment of HIV-1 infection. (1)

2 DOSAGE AND ADMINISTRATION

2.1 Screening for HLAB*5701 Allele prior to Starting Kivexa

Screen for the HLA‑B*5701 allele prior to initiating therapy with Kivexa .

2.2 Recommended Dosage for Adult Patients

The recommended dosage of Kivexa for adults is one tablet taken orally once daily, in combination with other antiretroviral agents, with or without food.

2.3 Recommended Dosage for Pediatric Patients

The recommended oral dose of Kivexa for pediatric patients weighing at least 25 kg is one tablet daily in combination with other antiretroviral agents . Before prescribing Kivexa tablets, pediatric patients should be assessed for the ability to swallow tablets.

2.4 Not Recommended Due to Lack of Dosage Adjustment

Because Kivexa is a fixed‑dose tablet and cannot be dose adjusted, Kivexa is not recommended for:


Use of EPIVIR® (lamivudine) oral solution or tablets and ZIAGEN® (abacavir) oral solution may be considered.

3 DOSAGE FORMS AND STRENGTHS

Kivexa tablets contain 600 mg of abacavir as Kivexa and 300 mg of lamivudine. The tablets are modified capsule-shaped, orange, film-coated, and debossed with “GS FC2” on one side with no markings on the reverse side.

Tablets: 600 mg of abacavir and 300 mg of lamivudine. (3)

4 CONTRAINDICATIONS

Kivexa is contraindicated in patients:

5 WARNINGS AND PRECAUTIONS

5.1 Hypersensitivity Reactions

Serious and sometimes fatal hypersensitivity reactions have occurred with abacavir, a component of Kivexa. These hypersensitivity reactions have included multi-organ failure and anaphylaxis and typically occurred within the first 6 weeks of treatment with abacavir (median time to onset was 9 days); although abacavir hypersensitivity reactions have occurred any time during treatment . Patients who carry the HLA‑B*5701 allele are at a higher risk of abacavir hypersensitivity reactions; although, patients who do not carry the HLA‑B*5701 allele have developed hypersensitivity reactions. Hypersensitivity to abacavir was reported in approximately 206 (8%) of 2,670 patients in 9 clinical trials with abacavir-containing products where HLA‑B*5701 screening was not performed. The incidence of suspected abacavir hypersensitivity reactions in clinical trials was 1% when subjects carrying the HLA‑B*5701 allele were excluded. In any patient treated with abacavir, the clinical diagnosis of hypersensitivity reaction must remain the basis of clinical decision making.

Due to the potential for severe, serious, and possibly fatal hypersensitivity reactions with abacavir:

5.2 Lactic Acidosis and Severe Hepatomegaly with Steatosis

Lactic acidosis and severe hepatomegaly with steatosis, including fatal cases, have been reported with the use of nucleoside analogues and other antiretrovirals. See full prescribing information for ZIAGEN and EPIVIR (lamivudine). Treatment with Kivexa should be suspended in any patient who develops clinical or laboratory findings suggestive of lactic acidosis or pronounced hepatotoxicity (which may include hepatomegaly and steatosis even in the absence of marked transaminase elevations).

5.3 Patients with Hepatitis B Virus Co-infection

Posttreatment Exacerbations of Hepatitis

Clinical and laboratory evidence of exacerbations of hepatitis have occurred after discontinuation of lamivudine. See full prescribing information for EPIVIR (lamivudine). Patients should be closely monitored with both clinical and laboratory follow‑up for at least several months after stopping treatment.

Emergence of Lamivudine‑Resistant HBV

Safety and efficacy of lamivudine have not been established for treatment of chronic hepatitis B in subjects dually infected with HIV‑1 and HBV. Emergence of hepatitis B virus variants associated with resistance to lamivudine has been reported in HIV‑1‑infected subjects who have received lamivudine‑containing antiretroviral regimens in the presence of concurrent infection with hepatitis B virus. See full prescribing information for EPIVIR (lamivudine).

5.4 Use with Interferon- and Ribavirin-Based Regimens

Patients receiving interferon alfa with or without ribavirin and Kivexa should be closely monitored for treatment‑associated toxicities, especially hepatic decompensation. See full prescribing information for EPIVIR. Discontinuation of Kivexa should be considered as medically appropriate. Dose reduction or discontinuation of interferon alfa, ribavirin, or both should also be considered if worsening clinical toxicities are observed, including hepatic decompensation (e.g., Child‑Pugh greater than 6).

5.5 Immune Reconstitution Syndrome

Immune reconstitution syndrome has been reported in patients treated with combination antiretroviral therapy, including Kivexa. During the initial phase of combination antiretroviral treatment, patients whose immune systems respond may develop an inflammatory response to indolent or residual opportunistic infections (such as Mycobacterium avium infection, cytomegalovirus, Pneumocystis jirovecii pneumonia [PCP], or tuberculosis), which may necessitate further evaluation and treatment.

Autoimmune disorders (such as Graves’ disease, polymyositis, and Guillain-Barré syndrome) have also been reported to occur in the setting of immune reconstitution; however, the time to onset is more variable, and can occur many months after initiation of treatment.

5.6 Fat Redistribution

Redistribution/accumulation of body fat including central obesity, dorsocervical fat enlargement, peripheral wasting, facial wasting, breast enlargement, and “cushingoid appearance” have been observed in patients receiving antiretroviral therapy. The mechanism and long-term consequences of these events are currently unknown. A causal relationship has not been established.

5.7 Myocardial Infarction

In a published prospective, observational, epidemiological trial designed to investigate the rate of myocardial infarction (MI) in patients on combination antiretroviral therapy, the use of abacavir within the previous 6 months was correlated with an increased risk of MI. In a sponsor‑conducted pooled analysis of clinical trials, no excess risk of MI was observed in abacavir‑treated subjects as compared with control subjects. In totality, the available data from the observational cohort and from clinical trials are inconclusive.

As a precaution, the underlying risk of coronary heart disease should be considered when prescribing antiretroviral therapies, including abacavir, and action taken to minimize all modifiable risk factors (e.g., hypertension, hyperlipidemia, diabetes mellitus, smoking).

6 ADVERSE REACTIONS

The following adverse reactions are discussed in other sections of the labeling:


The most commonly reported adverse reactions of at least moderate intensity (incidence greater than 5%) in an adult HIV-1 clinical trial were drug hypersensitivity, insomnia, depression/depressed mood, headache/migraine, fatigue/malaise, dizziness/vertigo, nausea, and diarrhea. (6.1)

To report SUSPECTED ADVERSE REACTIONS, contact ViiV Healthcare at 1-877-844-8872 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.

6.1 Clinical Trials Experience in Adult Subjects

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared with rates in the clinical trials of another drug and may not reflect the rates observed in clinical practice.

Serious and Fatal Abacavir-Associated Hypersensitivity Reactions

In clinical trials, serious and sometimes fatal hypersensitivity reactions have occurred with abacavir, a component of Kivexa . These reactions have been characterized by 2 or more of the following signs or symptoms: (1) fever; (2) rash; (3) gastrointestinal symptoms (including nausea, vomiting, diarrhea, or abdominal pain); (4) constitutional symptoms (including generalized malaise, fatigue, or achiness); (5) respiratory symptoms (including dyspnea, cough, or pharyngitis). Almost all abacavir hypersensitivity reactions include fever and/or rash as part of the syndrome.

Other signs and symptoms have included lethargy, headache, myalgia, edema, arthralgia, and paresthesia. Anaphylaxis, liver failure, renal failure, hypotension, adult respiratory distress syndrome, respiratory failure, myolysis, and death have occurred in association with these hypersensitivity reactions. Physical findings have included lymphadenopathy, mucous membrane lesions (conjunctivitis and mouth ulcerations), and maculopapular or urticarial rash (although some patients had other types of rashes and others did not have a rash). There were reports of erythema multiforme. Laboratory abnormalities included elevated liver chemistries, elevated creatine phosphokinase, elevated creatinine, and lymphopenia and abnormal chest x‑ray findings (predominantly infiltrates, which were localized).

Additional Adverse Reactions with Use of Kivexa

TherapyNaive Adults: Treatment‑emergent clinical adverse reactions (rated by the investigator as moderate or severe) with greater than or equal to 5% frequency during therapy with ZIAGEN 600 mg once daily or ZIAGEN 300 mg twice daily, both in combination with lamivudine 300 mg once daily and efavirenz 600 mg once daily, are listed in Table 1.


Adverse Event


ZIAGEN 600 mg q.d.

plus EPIVIR plus Efavirenz

(n = 384)


ZIAGEN 300 mg b.i.d.

plus EPIVIR plus Efavirenz

(n = 386)

  • Drug hypersensitivity a,b

9%


7%

  • Insomnia

7%


9%

  • Depression/Depressed mood

7%


7%

  • Headache/Migraine

7%


6%

  • Fatigue/Malaise

6%


8%

  • Dizziness/Vertigo

6%


6%

  • Nausea

5%


6%

  • Diarrheaa

5%


6%

  • Rash

5%


5%

  • Pyrexia

5%


3%

  • Abdominal pain/gastritis

4%


5%

  • Abnormal dreams

4%


5%

  • Anxiety

3%


5%


aSubjects receiving ZIAGEN 600 mg once daily, experienced a significantly higher incidence of severe drug hypersensitivity reactions and severe diarrhea compared with subjects who received ZIAGEN 300 mg twice daily. Five percent (5%) of subjects receiving ZIAGEN 600 mg once daily had severe drug hypersensitivity reactions compared with 2% of subjects receiving ZIAGEN 300 mg twice daily. Two percent (2%) of subjects receiving ZIAGEN 600 mg once daily had severe diarrhea while none of the subjects receiving ZIAGEN 300 mg twice daily had this event.

bCNA30024 was a multi‑center, double-blind, controlled trial in which 649 HIV‑1‑infected, therapy‑naive adults were randomized and received either ZIAGEN (300 mg twice daily), EPIVIR (150 mg twice daily), and efavirenz (600 mg once daily); or zidovudine (300 mg twice daily), EPIVIR (150 mg twice daily), and efavirenz (600 mg once daily). CNA30024 used double‑blind ascertainment of suspected hypersensitivity reactions. During the blinded portion of the trial, suspected hypersensitivity to abacavir was reported by investigators in 9% of 324 subjects in the abacavir group and 3% of 325 subjects in the zidovudine group.

Laboratory Abnormalities: Laboratory abnormalities observed in clinical trials of ZIAGEN were anemia, neutropenia, liver function test abnormalities, and elevations of CPK, blood glucose, and triglycerides. Additional laboratory abnormalities observed in clinical trials of EPIVIR were thrombocytopenia and elevated levels of bilirubin, amylase, and lipase.

The frequencies of treatment‑emergent laboratory abnormalities were comparable between treatment groups in CNA30021.

Other Adverse Events: In addition to adverse reactions listed above, other adverse events observed in the expanded access program for abacavir were pancreatitis and increased GGT.

6.2 Clinical Trials Experience in Pediatric Subjects

The safety of once-daily compared with twice-daily dosing of abacavir and lamivudine, administered as either single products or as Kivexa, was assessed in the ARROW trial. Primary safety assessment in the ARROW (COL105677) trial was based on Grade 3 and Grade 4 adverse events. The frequency of Grade 3 and 4 adverse events was similar among subjects randomized to once-daily dosing compared with subjects randomized to twice-daily dosing. One event of Grade 4 hepatitis in the once-daily cohort was considered as uncertain causality by the investigator and all other Grade 3 or 4 adverse events were considered not related by the investigator. No additional safety issues were identified in pediatric subjects receiving abacavir and lamivudine once-daily compared with historical data in adults .

6.3 Postmarketing Experience

The following adverse reactions have been identified during postmarketing use. Because these reactions are reported voluntarily from a population of unknown size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

Abacavir

Cardiovascular: Myocardial infarction.

Skin: Suspected Stevens‑Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) have been reported in patients receiving abacavir primarily in combination with medications known to be associated with SJS and TEN, respectively. Because of the overlap of clinical signs and symptoms between hypersensitivity to abacavir and SJS and TEN, and the possibility of multiple drug sensitivities in some patients, abacavir should be discontinued and not restarted in such cases. There have also been reports of erythema multiforme with abacavir use .

Abacavir and Lamivudine

Body as a Whole: Redistribution/accumulation of body fat .

Digestive: Stomatitis.

Endocrine and Metabolic: Hyperglycemia.

General: Weakness.

Hemic and Lymphatic: Aplastic anemia, anemia (including pure red cell aplasia and severe anemias progressing on therapy), lymphadenopathy, splenomegaly.

Hepatic: Lactic acidosis and hepatic steatosis , posttreatment exacerbations of hepatitis B .

Hypersensitivity: Sensitization reactions (including anaphylaxis), urticaria.

Musculoskeletal: Muscle weakness, CPK elevation, rhabdomyolysis.

Nervous: Paresthesia, peripheral neuropathy, seizures.

Respiratory: Abnormal breath sounds/wheezing.

Skin: Alopecia, erythema multiforme, Stevens-Johnson syndrome.

7 DRUG INTERACTIONS

7.1 Methadone

In a trial of 11 HIV‑1‑infected subjects receiving methadone‑maintenance therapy with 600 mg of ZIAGEN twice daily (twice the currently recommended dose), oral methadone clearance increased . This alteration will not result in a methadone dose modification in the majority of patients; however, an increased methadone dose may be required in a small number of patients.

8 USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

Pregnancy Exposure Registry

There is a pregnancy exposure registry that monitors pregnancy outcomes in women exposed to Kivexa during pregnancy. Healthcare providers are encouraged to register patients by calling the Antiretroviral Pregnancy Registry (APR) at 1-800-258-4263.

Risk Summary

Available data from the APR show no difference in the overall risk of birth defects for abacavir or lamivudine compared with the background rate for birth defects of 2.7% in the Metropolitan Atlanta Congenital Defects Program (MACDP) reference population . The APR uses the MACDP as the U.S. reference population for birth defects in the general population. The MACDP evaluates women and infants from a limited geographic area and does not include outcomes for births that occurred at less than 20 weeks gestation. The rate of miscarriage is not reported in the APR. The estimated background rate of miscarriage in clinically recognized pregnancies in the U.S. general population is 15% to 20%. The background risk for major birth defects and miscarriage for the indicated population is unknown.

In animal reproduction studies, oral administration of abacavir to pregnant rats during organogenesis resulted in fetal malformations and other embryonic and fetal toxicities at exposures 35 times the human exposure (AUC) at the recommended clinical daily dose. However, no adverse developmental effects were observed following oral administration of abacavir to pregnant rabbits during organogenesis, at exposures approximately 9 times the human exposure (AUC) at the recommended clinical dose. Oral administration of lamivudine to pregnant rabbits during organogenesis resulted in embryolethality at systemic exposure (AUC) similar to the recommended clinical dose; however, no adverse development effects were observed with oral administration of lamivudine to pregnant rats during organogenesis at plasma concentrations (Cmax) 35 times the recommended clinical dose .

Data

Human Data: Abacavir: Based on prospective reports to the APR of over 2,000 exposures to abacavir during pregnancy resulting in live births (including over 1,000 exposed in the first trimester), there was no difference between the overall risk of birth defects for abacavir compared with the background birth defect rate of 2.7% in the U.S. reference population of the MACDP. The prevalence of defects in live births was 2.9% (95% CI: 2.0% to 4.1%) following first trimester exposure to abacavir-containing regimens and 2.7% (95% CI: 1.9% to 3.7%) following second/third trimester exposure to abacavir-containing regimens.

Abacavir has been shown to cross the placenta and concentrations in neonatal plasma at birth were essentially equal to those in maternal plasma at delivery .

Lamivudine: Based on prospective reports to the APR of over 11,000 exposures to lamivudine during pregnancy resulting in live births (including over 4,500 exposed in the first trimester), there was no difference between the overall risk of birth defects for lamivudine compared with the background birth defect rate of 2.7% in the U.S. reference population of the MACDP. The prevalence of birth defects in live births was 3.1% (95% CI: 2.6% to 3.6%) following first trimester exposure to lamivudine-containing regimens and 2.8% (95% CI: 2.5%, 3.3%) following second/third trimester exposure to lamivudine-containing regimens.

Lamivudine pharmacokinetics were studied in pregnant women during 2 clinical trials conducted in South Africa. The trials assessed pharmacokinetics in 16 women at 36 weeks gestation using 150 mg lamivudine twice daily with zidovudine, 10 women at 38 weeks gestation using 150 mg lamivudine twice daily with zidovudine, and 10 women at 38 weeks gestation using lamivudine 300 mg twice daily without other antiretrovirals. These trials were not designed or powered to provide efficacy information. Lamivudine concentrations were generally similar in maternal, neonatal, and umbilical cord serum samples. In a subset of subjects, amniotic fluid specimens were collected following natural rupture of membranes and confirmed that lamivudine crosses the placenta in humans. Based on limited data at delivery, median (range) amniotic fluid concentrations of lamivudine were 3.9 (1.2 to 12.8)-fold greater compared with paired maternal serum concentration (n = 8).

Animal Data: Abacavir: Abacavir was administered orally to pregnant rats (at 100, 300, and 1,000 mg per kg per day) and rabbits (at 125, 350, or 700 mg per kg per day) during organogenesis (on gestation Days 6 through 17 and 6 through 20, respectively). Fetal malformations (increased incidences of fetal anasarca and skeletal malformations) or developmental toxicity (decreased fetal body weight and crown‑rump length) were observed in rats at doses up to 1,000 mg per kg per day, resulting in exposures approximately 35 times the human exposure (AUC) at the recommended daily dose. No developmental effects were observed in rats at 100 mg per kg per day, resulting in exposures (AUC) 3.5 times the human exposure at the recommended daily dose. In a fertility and early embryo-fetal development study conducted in rats (at 60, 160, or 500 mg per kg per day), embryonic and fetal toxicities (increased resorptions, decreased fetal body weights) or toxicities to the offspring (increased incidence of stillbirth and lower body weights) occurred at doses up to 500 mg per kg per day. No developmental effects were observed in rats at 60 mg per kg per day, resulting in exposures (AUC) approximately 4 times the human exposure at the recommended daily dose. Studies in pregnant rats showed that abacavir is transferred to the fetus through the placenta. In pregnant rabbits, no developmental toxicities and no increases in fetal malformations occurred at up to the highest dose evaluated, resulting in exposures (AUC) approximately 9 times the human exposure at the recommended dose.

Lamivudine: Lamivudine was administered orally to pregnant rats (at 90, 600, and 4,000 mg per kg per day) and rabbits (at 90, 300 and 1,000 mg per kg per day and at 15, 40, and 90 mg per kg per day) during organogenesis (on gestation Days 7 through 16 [rat] and 8 through 20 [rabbit]). No evidence of fetal malformations due to lamivudine was observed in rats and rabbits at doses producing plasma concentrations (Cmax) approximately 35 times higher than human exposure at the recommended daily dose. Evidence of early embryolethality was seen in the rabbit at systemic exposures (AUC) similar to those observed in humans, but there was no indication of this effect in the rat at plasma concentrations (Cmax) 35 times higher than human exposure at the recommended daily dose. Studies in pregnant rats showed that lamivudine is transferred to the fetus through the placenta. In the pre-and postnatal development study in rats, lamivudine was administered orally at doses of 180, 900, and 4,000 mg per kg per day from gestation Day 6 through postnatal Day 20). In the study, development of the offspring, including fertility and reproductive performance, were not affected by the maternal administration of lamivudine.

8.2 Lactation

Risk Summary

The Centers for Disease Control and Prevention recommend that HIV‑1‑infected mothers in the United States not breastfeed their infants to avoid risking postnatal transmission of HIV‑1 infection. Abacavir and lamivudine are present in human milk. There is no information on the effects of abacavir and lamivudine on the breastfed infant or the effects of the drug on milk production. Because of the potential for HIV‑1 transmission (in HIV-negative infants), (2) developing viral resistance (in HIV-positive infants), and (3) serious adverse reactions in a breastfed infant, instruct mothers not to breastfeed if they are receiving Kivexa.

8.4 Pediatric Use

The dosing recommendations in this population are based on the safety and efficacy established in a controlled trial conducted using either the combination of EPIVIR and ZIAGEN or Kivexa .

In pediatric patients weighing less than 25 kg, use of abacavir and lamivudine as single products is recommended to achieve appropriate dosing.

8.5 Geriatric Use

Clinical trials of abacavir and lamivudine did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. In general, caution should be exercised in the administration of Kivexa in elderly patients reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.

8.6 Patients with Impaired Renal Function

Kivexa is not recommended for patients with creatinine clearance less than 50 mL per min because Kivexa is a fixed-dose combination and the dosage of the individual components cannot be adjusted. If a dose reduction of lamivudine, a component of Kivexa, is required for patients with creatinine clearance less than 50 mL per min, then the individual components should be used .

8.7 Patients with Impaired Hepatic Function

Kivexa is a fixed-dose combination and the dosage of the individual components cannot be adjusted. If a dose reduction of abacavir, a component of Kivexa, is required for patients with mild hepatic impairment (Child-Pugh Class A), then the individual components should be used .

The safety, efficacy, and pharmacokinetic properties of abacavir have not been established in patients with moderate (Child-Pugh Class B) or severe (Child-Pugh Class C) hepatic impairment; therefore, Kivexa is contraindicated in these patients .

10 OVERDOSAGE

There is no known specific treatment for overdose with Kivexa. If overdose occurs, the patient should be monitored, and standard supportive treatment applied as required.

Abacavir: It is not known whether abacavir can be removed by peritoneal dialysis or hemodialysis.

Lamivudine: Because a negligible amount of lamivudine was removed via (4-hour) hemodialysis, continuous ambulatory peritoneal dialysis, and automated peritoneal dialysis, it is not known if continuous hemodialysis would provide clinical benefit in a lamivudine overdose event.

11 DESCRIPTION

Kivexa

Kivexa tablets contain the following 2 synthetic nucleoside analogues: abacavir (ZIAGEN, also a component of TRIZIVIR®) and lamivudine (also known as EPIVIR or 3TC) with inhibitory activity against HIV‑1.

Kivexa tablets are for oral administration. Each orange, film‑coated tablet contains the active ingredients 600 mg of abacavir as Kivexa and 300 mg of lamivudine, and the inactive ingredients magnesium stearate, microcrystalline cellulose, and sodium starch glycolate. The tablets are coated with a film (OPADRY® orange YS-1-13065-A) that is made of FD&C Yellow No. 6, hypromellose, polyethylene glycol 400, polysorbate 80, and titanium dioxide.

Kivexa

The chemical name of Kivexa is (1S,cis)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol sulfate (salt) (2:1). Kivexa is the enantiomer with 1S, 4R absolute configuration on the cyclopentene ring. It has a molecular formula of (C14H18N6O)2-H2SO4 and a molecular weight of 670.76 g per mol. It has the following structural formula:

Kivexa is a white to off‑white solid and is soluble in water.

In vivo, Kivexa dissociates to its free base, abacavir. Dosages are expressed in terms of abacavir.

Lamivudine

The chemical name of lamivudine is (2R,cis)-4-amino-1-(2-hydroxymethyl-1,3-oxathiolan-5-yl)-(1H)-pyrimidin-2-one. Lamivudine is the (‑)enantiomer of a dideoxy analogue of cytidine. Lamivudine has also been referred to as (‑)2′,3′-dideoxy, 3′-thiacytidine. It has a molecular formula of C8H11N3O3S and a molecular weight of 229.3 g per mol. It has the following structural formula:

Lamivudine is a white to off‑white crystalline solid and is soluble in water.

Kivexa structural formula Lamivudine chemical structure

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

Kivexa is an antiretroviral agent .

12.3 Pharmacokinetics

Pharmacokinetics in Adults

In a single-dose, 3-way crossover bioavailability trial of 1 EPZICOM tablet versus 2 ZIAGEN tablets (2 x 300 mg) and 2 EPIVIR tablets (2 x 150 mg) administered simultaneously in healthy subjects (n = 25), there was no difference in the extent of absorption, as measured by the area under the plasma concentration-time curve (AUC) and maximal peak concentration (Cmax), of each component.

Abacavir: Following oral administration, abacavir is rapidly absorbed and extensively distributed. After oral administration of a single dose of 600 mg of abacavir in 20 subjects, Cmax was 4.26 ± 1.19 mcg per mL (mean ± SD) and AUC was 11.95 ± 2.51 mcg-hour per mL. Binding of abacavir to human plasma proteins is approximately 50% and was independent of concentration. Total blood and plasma drug-related radioactivity concentrations are identical, demonstrating that abacavir readily distributes into erythrocytes. The primary routes of elimination of abacavir are metabolism by alcohol dehydrogenase to form the 5′-carboxylic acid and glucuronyl transferase to form the 5′-glucuronide.

Lamivudine: Following oral administration, lamivudine is rapidly absorbed and extensively distributed. After multiple-dose oral administration of lamivudine 300 mg once daily for 7 days to 60 healthy subjects, steady-state Cmax (Cmax,ss) was 2.04 ± 0.54 mcg per mL (mean ± SD) and the 24-hour steady-state AUC (AUC24,ss) was 8.87 ± 1.83 mcg-hour per mL. Binding to plasma protein is low. Approximately 70% of an intravenous dose of lamivudine is recovered as unchanged drug in the urine. Metabolism of lamivudine is a minor route of elimination. In humans, the only known metabolite is the trans-sulfoxide metabolite (approximately 5% of an oral dose after 12 hours).

In humans, abacavir and lamivudine are not significantly metabolized by cytochrome P450 enzymes.

The pharmacokinetic properties of abacavir and lamivudine in fasting subjects are summarized in Table 2.


Parameter


Abacavir


Lamivudine


Oral bioavailability (%)


86 ± 25


n = 6


86 ± 16


n = 12


Apparent volume of distribution (L/kg)


0.86 ± 0.15


n = 6


1.3 ± 0.4


n = 20


Systemic clearance (L/h/kg)


0.80 ± 0.24


n = 6


0.33 ± 0.06


n = 20


Renal clearance (L/h/kg)


0.007 ± 0.008


n = 6


0.22 ± 0.06


n = 20


Elimination half-life (h)


1.45 ± 0.32


n = 20


5 to 7b


aData presented as mean ± standard deviation except where noted.

bApproximate range.

Effect of Food on Absorption of Kivexa

Kivexa may be administered with or without food. Administration with a high-fat meal in a single-dose bioavailability trial resulted in no change in AUClast, AUC, and Cmax for lamivudine. Food did not alter the extent of systemic exposure to abacavir (AUC), but the rate of absorption (Cmax) was decreased approximately 24% compared with fasted conditions (n = 25). These results are similar to those from previous trials of the effect of food on abacavir and lamivudine tablets administered separately.

Specific Populations

Renal Impairment: Kivexa: The effect of renal impairment on the combination of abacavir and lamivudine has not been evaluated.

Hepatic Impairment: Kivexa: The effect of hepatic impairment on the combination of abacavir and lamivudine has not been evaluated.

Pregnancy: Abacavir: Abacavir pharmacokinetics were studied in 25 pregnant women during the last trimester of pregnancy receiving abacavir 300 mg twice daily. Abacavir exposure (AUC) during pregnancy was similar to those in postpartum and in HIV-infected non-pregnant historical controls. Consistent with passive diffusion of abacavir across the placenta, abacavir concentrations in neonatal plasma cord samples at birth were essentially equal to those in maternal plasma at delivery.

Lamivudine: Lamivudine pharmacokinetics were studied in 36 pregnant women during 2 clinical trials conducted in South Africa. Lamivudine pharmacokinetics in pregnant women were similar to those seen in non-pregnant adults and in postpartum women. Lamivudine concentrations were generally similar in maternal, neonatal, and umbilical cord serum samples.

Pediatric Patients: Abacavir and Lamivudine: The pharmacokinetic data for abacavir and lamivudine following administration of Kivexa in pediatric subjects weighing 25 kg and above are limited. The dosing recommendations in this population are based on the safety and efficacy established in a controlled trial conducted using either the combination of EPIVIR and ZIAGEN or Kivexa. Refer to the EPIVIR and ZIAGEN USPI for pharmacokinetic information on the individual products in pediatric patients .

Geriatric Patients: The pharmacokinetics of abacavir and lamivudine have not been studied in subjects over 65 years of age.

Gender: There are no significant or clinically relevant gender differences in the pharmacokinetics of the individual components (abacavir or lamivudine) based on the available information that was analyzed for each of the individual components.

Race: There are no significant or clinically relevant racial differences in pharmacokinetics of the individual components (abacavir or lamivudine) based on the available information that was analyzed for each of the individual components.

Drug Interactions

The drug interactions described are based on trials conducted with abacavir or lamivudine as single entities; no drug interaction trials have been conducted with Kivexa.

Cytochrome P450 Enzymes: In humans, abacavir and lamivudine are not significantly metabolized by cytochrome P450 enzymes nor do they inhibit or induce this enzyme system; therefore, it is unlikely that clinically significant drug interactions will occur with drugs metabolized through these pathways.

Abacavir: Lamivudine and/or Zidovudine: Fifteen HIV‑1‑infected subjects were enrolled in a crossover‑designed drug interaction trial evaluating single doses of abacavir (600 mg), lamivudine (150 mg), and zidovudine (300 mg) alone or in combination. Analysis showed no clinically relevant changes in the pharmacokinetics of abacavir with the addition of lamivudine or zidovudine or the combination of lamivudine and zidovudine. Lamivudine exposure (AUC decreased 15%) and zidovudine exposure (AUC increased 10%) did not show clinically relevant changes with concurrent abacavir.

Lamivudine: Zidovudine: No clinically significant alterations in lamivudine or zidovudine pharmacokinetics were observed in 12 asymptomatic HIV‑1-infected adult subjects given a single dose of zidovudine (200 mg) in combination with multiple doses of lamivudine (300 mg every 12 h).

Other Interactions

Ethanol: Abacavir has no effect on the pharmacokinetic properties of ethanol. Ethanol decreases the elimination of abacavir causing an increase in overall exposure.

Methadone: In a trial of 11 HIV‑1‑infected subjects receiving methadone‑maintenance therapy (40 mg and 90 mg daily), with 600 mg of ZIAGEN twice daily (twice the currently recommended dose), oral methadone clearance increased 22% (90% CI: 6% to 42%) . The addition of methadone has no clinically significant effect on the pharmacokinetic properties of abacavir.

Ribavirin: In vitro data indicate ribavirin reduces phosphorylation of lamivudine, stavudine, and zidovudine. However, no pharmacokinetic (e.g., plasma concentrations or intracellular triphosphorylated active metabolite concentrations) or pharmacodynamic (e.g., loss of HIV‑1/HCV virologic suppression) interaction was observed when ribavirin and lamivudine (n = 18), stavudine (n = 10), or zidovudine (n = 6) were coadministered as part of a multi‑drug regimen to HIV‑1/HCV co‑infected subjects .

Interferon Alfa: There was no significant pharmacokinetic interaction between lamivudine and interferon alfa in a trial of 19 healthy male subjects.

The effects of other coadministered drugs on abacavir or lamivudine are provided in Table 3.


Coadministered

Drug and Dose


Drug and Dose


n


Concentrations of Abacavir or Lamivudine


Concentration of Coadministered Drug


AUC


Variability


Ethanol

0.7 g/kg


Abacavir

Single 600 mg


24


↑41%


90% CI:

35% to 48%


a


Nelfinavir

750 mg every 8 h x 7 to 10 days


Lamivudine

Single 150 mg


11


↑10%


95% CI:

1% to 20%




Trimethoprim 160 mg/

Sulfamethoxazole

800 mg daily x 5 days


Lamivudine

Single 300 mg


14


↑43%


90% CI:

32% to 55%




↑ = Increase; ↔ = No significant change; AUC = Area under the concentration versus time curve; CI = Confidence interval.

aThe drug-drug interaction was only evaluated in males.

12.4 Microbiology

Mechanism of Action

Abacavir: Abacavir is a carbocyclic synthetic nucleoside analogue. Abacavir is converted by cellular enzymes to the active metabolite, carbovir triphosphate (CBV-TP), an analogue of deoxyguanosine-5′-triphosphate (dGTP). CBV-TP inhibits the activity of HIV-1 reverse transcriptase (RT) both by competing with the natural substrate dGTP and by its incorporation into viral DNA.

Lamivudine: Lamivudine is a synthetic nucleoside analogue. Intracellularly lamivudine is phosphorylated to its active 5′-triphosphate metabolite, lamivudine triphosphate (3TC-TP). The principal mode of action of 3TC-TP is inhibition of RT via DNA chain termination after incorporation of the nucleotide analogue.

Antiviral Activity

Abacavir: The antiviral activity of abacavir against HIV‑1 was assessed in a number of cell lines including primary monocytes/macrophages and peripheral blood mononuclear cells (PBMCs). EC50 values ranged from 3.7 to 5.8 microM (1 microM = 0.28 mcg per mL) and 0.07 to 1.0 microM against HIV‑1IIIB and HIV‑1BaL, respectively, and the mean EC50 value was 0.26 ± 0.18 microM against 8 clinical isolates. The median EC50 values of abacavir were 344 nM (range: 14.8 to 676 nM), 16.9 nM (range: 5.9 to 27.9 nM), 8.1 nM (range: 1.5 to 16.7 nM), 356 nM (range: 35.7 to 396 nM), 105 nM (range: 28.1 to 168 nM), 47.6 nM (range: 5.2 to 200 nM), 51.4 nM (range: 7.1 to 177 nM), and 282 nM (range: 22.4 to 598 nM) against HIV‑1 clades A-G and group O viruses (n = 3 except n = 2 for clade B), respectively. The EC50 values against HIV-2 isolates (n = 4) ranged from 0.024 to 0.49 microM.

Lamivudine: The antiviral activity of lamivudine against HIV‑1 was assessed in a number of cell lines including monocytes and PBMCs using standard susceptibility assays. EC50 values were in the range of 0.003 to 15 microM (1 microM = 0.23 mcg per mL). The median EC50 values of lamivudine were 60 nM (range: 20 to 70 nM), 35 nM (range: 30 to 40 nM), 30 nM (range: 20 to 90 nM), 20 nM (range: 3 to 40 nM), 30 nM (range: 1 to 60 nM), 30 nM (range: 20 to 70 nM), 30 nM (range: 3 to 70 nM), and 30 nM (range: 20 to 90 nM) against HIV-1 clades A-G and group O viruses (n = 3 except n = 2 for clade B), respectively. The EC50 values against HIV-2 isolates (n = 4) ranged from 0.003 to 0.120 microM in PBMCs. Ribavirin (50 microM) used in the treatment of chronic HCV infection decreased the anti-HIV‑1 activity of lamivudine by 3.5‑fold in MT‑4 cells.

The combination of abacavir and lamivudine has demonstrated antiviral activity in cell culture against non‑subtype B isolates and HIV‑2 isolates with equivalent antiviral activity as for subtype B isolates. Neither abacavir, nor lamivudine, were antagonistic to all tested anti-HIV agents. See full prescribing information for ZIAGEN (abacavir) and EPIVIR (lamivudine). Ribavirin, used in the treatment of HCV infection, decreased the anti-HIV-1 potency of abacavir/lamivudine reproducibly by 2- to 6-fold in cell culture.

Resistance

HIV‑1 isolates with reduced susceptibility to the combination of abacavir and lamivudine have been selected in cell culture with amino acid substitutions K65R, L74V, Y115F, and M184V/I emerging in HIV‑1 RT. M184V or I substitutions resulted in high-level resistance to lamivudine and an approximately 2-fold decrease in susceptibility to abacavir. Substitutions K65R, L74M, or Y115F with M184V or I conferred a 7- to 8-fold reduction in abacavir susceptibility, and combinations of three substitutions were required to confer more than an 8-fold reduction in susceptibility.

Cross-Resistance

Cross‑resistance has been observed among nucleoside reverse transcriptase inhibitors (NRTIs). The combination of abacavir/lamivudine has demonstrated decreased susceptibility to viruses with a K65R substitution with or without an M184V/I substitution, viruses with L74V plus the M184V/I substitution, and viruses with thymidine analog mutation substitutions (TAMs: M41L, D67N, K70R, L210W, T215Y/F, K219E/R/H/Q/N) plus M184V. An increasing number of TAMs is associated with a progressive reduction in abacavir susceptibility.

13 NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

Carcinogenicity

Abacavir: Abacavir was administered orally at 3 dosage levels to separate groups of mice and rats in 2-year carcinogenicity studies. Results showed an increase in the incidence of malignant and non-malignant tumors. Malignant tumors occurred in the preputial gland of males and the clitoral gland of females of both species, and in the liver of female rats. In addition, non-malignant tumors also occurred in the liver and thyroid gland of female rats. These observations were made at systemic exposures in the range of 6 to 32 times the human exposure at the recommended dose of 600 mg.

Lamivudine: Long‑term carcinogenicity studies with lamivudine in mice and rats showed no evidence of carcinogenic potential at exposures up to 10 times and 58 times (rats) the human exposures at the recommended dose of 300 mg.

Mutagenicity

Abacavir: Abacavir induced chromosomal aberrations both in the presence and absence of metabolic activation in an in vitro cytogenetic study in human lymphocytes. Abacavir was mutagenic in the absence of metabolic activation, although it was not mutagenic in the presence of metabolic activation in an L5178Y mouse lymphoma assay. Abacavir was clastogenic in males and not clastogenic in females in an in vivo mouse bone marrow micronucleus assay. Abacavir was not mutagenic in bacterial mutagenicity assays in the presence and absence of metabolic activation.

Lamivudine: Lamivudine was mutagenic in an L5178Y mouse lymphoma assay and clastogenic in a cytogenetic assay using cultured human lymphocytes. Lamivudine was not mutagenic in a microbial mutagenicity assay, in an in vitro cell transformation assay, in a rat micronucleus test, in a rat bone marrow cytogenetic assay, and in an assay for unscheduled DNA synthesis in rat liver.

Impairment of Fertility

Abacavir: Abacavir did not affect male or female fertility in rats at a dose associated with exposures (AUC) approximately 3.3 times (male) or 4.1 times (female) those in humans at the clinically recommended dose.

Lamivudine: Lamivudine did not affect male or female fertility in rats at doses up to 4,000 mg per kg per day, associated with concentrations approximately 42 times (male) or 63 times (female) higher than the concentrations (Cmax) in humans at the dose of 300 mg.

13.2 Animal Toxicology and/or Pharmacology

Myocardial degeneration was found in mice and rats following administration of abacavir for 2 years. The systemic exposures were equivalent to 7 to 24 times the expected systemic exposure in humans at a dose of 600 mg. The clinical relevance of this finding has not been determined.

14 CLINICAL STUDIES

14.1 Adults

One Kivexa tablet given once daily is an alternative regimen to EPIVIR tablets 300 mg once daily plus ZIAGEN tablets 2 x 300 mg once daily as a component of antiretroviral therapy.

The following trial was conducted with the individual components of Kivexa.

Therapy-Naive Adults

CNA30021 was an international, multicenter, double-blind, controlled trial in which 770 HIV-1-infected, therapy-naive adults were randomized and received either ZIAGEN 600 mg once daily or ZIAGEN 300 mg twice daily, both in combination with EPIVIR 300 mg once daily and efavirenz 600 mg once daily. The double-blind treatment duration was at least 48 weeks. Trial participants had a mean age of 37 years; were male, white (54%), black (27%), and American Hispanic (15%). The median baseline CD4+ cell count was 262 cells per mm3 (range: 21 to 918 cells per mm3) and the median baseline plasma HIV-1 RNA was 4.89 log10 copies per mL (range: 2.60 to 6.99 log10 copies per mL).

The outcomes of randomized treatment are provided in Table 4.


Outcome


ZIAGEN 600 mg q.d.

plus EPIVIR plus

Efavirenz

(n = 384)


ZIAGEN 300 mg b.i.d.

plus EPIVIR plus

Efavirenz

(n = 386)


Respondera


64% (71%)


65% (72%)


Virologic failureb


11% (5%)


11% (5%)


Discontinued due to adverse reactions


13%


11%


Discontinued due to other reasonsc


11%


13%


aSubjects achieved and maintained confirmed HIV-1 RNA less than 50 copies per mL (less than 400 copies per mL) through Week 48 (Roche AMPLICOR Ultrasensitive HIV-1 MONITOR® standard test version 1.0).

bIncludes viral rebound, failure to achieve confirmed less than 50 copies per mL (less than 400 copies per mL) by Week 48, and insufficient viral load response.

cIncludes consent withdrawn, lost to follow-up, protocol violations, clinical progression, and other.

After 48 weeks of therapy, the median CD4+ cell count increases from baseline were 188 cells per mm3 in the group receiving ZIAGEN 600 mg once daily and 200 cells per mm3 in the group receiving ZIAGEN 300 mg twice daily. Through Week 48, 6 subjects (2%) in the group receiving ZIAGEN 600 mg once daily (4 CDC classification C events and 2 deaths) and 10 subjects (3%) in the group receiving ZIAGEN 300 mg twice daily (7 CDC classification C events and 3 deaths) experienced clinical disease progression. None of the deaths were attributed to trial medications.

14.2 Pediatric Subjects

ARROW (COL105677) was a 5-year, randomized, multicenter trial which evaluated multiple aspects of clinical management of HIV-1 infection in pediatric subjects. HIV-1–infected, treatment-naïve subjects aged 3 months to 17 years were enrolled and treated with a first-line regimen containing abacavir and lamivudine, dosed twice daily according to World Health Organization recommendations. After a minimum of 36 weeks of treatment, subjects were given the option to participate in Randomization 3 of the ARROW trial, comparing the safety and efficacy of once-daily dosing with twice-daily dosing of abacavir and lamivudine, in combination with a third antiretroviral drug, for an additional 96 weeks. Virologic suppression was not a requirement for participation at baseline for Randomization 3. At baseline for Randomization 3 (following a minimum of 36 weeks of twice-daily treatment), 75% of subjects in the twice-daily cohort were virologically suppressed, compared with 71% of subjects in the once-daily cohort.

Of the 1,206 original ARROW subjects, 669 participated in Randomization 3. Subjects randomized to receive once-daily dosing (n = 336) and who weighed at least 25 kg received abacavir 600 mg and lamivudine 300 mg, as either the single entities or as Kivexa.

The proportions of subjects with HIV-1 RNA less than 80 copies per mL through 96 weeks are shown in Table 5. The differences between virologic responses in the two treatment arms were comparable across baseline characteristics for gender and age.


Outcome


Abacavir plus Lamivudine

Twice-Daily Dosing

(n = 333)


Abacavir plus Lamivudine

Once-Daily Dosing

(n = 336)


HIV-1 RNA <80 copies/mLb


70%


67%


HIV-1 RNA ≥80 copies/mLc


28%


31%


No virologic data


Discontinued due to adverse event or death


1%


<1%


Discontinued study for other reasonsd


0%


<1%


Missing data during window but on study


1%


1%


aAnalyses were based on the last observed viral load data within the Week 96 window.

bRisk difference (95% CI) of response rate is -2.4% (-9% to 5%) at Week 96.

cIncludes subjects who discontinued due to lack or loss of efficacy or for reasons other than an adverse event or death, and had a viral load value of greater than or equal to 80 copies per mL, or subjects who had a switch in background regimen that was not permitted by the protocol.

dOther includes reasons such as withdrew consent, loss to follow-up, etc. and the last available HIV-1 RNA less than 80 copies per mL (or missing).

16 HOW SUPPLIED/STORAGE AND HANDLING

Kivexa is available as tablets. Each tablet contains 600 mg of abacavir as Kivexa and 300 mg of lamivudine. The tablets are orange, film-coated, modified capsule-shaped, and debossed with GS FC2 on one side with no markings on the reverse side. They are packaged as follows:

Bottles of 30 tablets (NDC 49702-206-13).

Store at 25°C (77°F); excursions permitted to 15° to 30°C (59° to 86°F).

17 PATIENT COUNSELING INFORMATION

Advise the patient to read the FDA-approved patient labeling (Medication Guide).

Hypersensitivity Reactions

Inform patients:


Lactic Acidosis/Hepatomegaly with Steatosis

Advise patients that lactic acidosis and severe hepatomegaly with steatosis have been reported with use of nucleoside analogues and other antiretrovirals. Advise patients to stop taking Kivexa if they develop clinical symptoms suggestive of lactic acidosis or pronounced hepatotoxicity .

Patients with Hepatitis B or C Co-infection

Advise patients co-infected with HIV‑1 and HBV that worsening of liver disease has occurred in some cases when treatment with lamivudine was discontinued. Advise patients to discuss any changes in regimen with their physician .

Inform patients with HIV‑1/HCV co-infection that hepatic decompensation (some fatal) has occurred in HIV‑1/HCV co-infected patients receiving combination antiretroviral therapy for HIV‑1 and interferon alfa with or without ribavirin .

Immune Reconstitution Syndrome

Advise patients to inform their healthcare provider immediately of any signs and symptoms of infection as inflammation from previous infection may occur soon after combination antiretroviral therapy, including when Kivexa is started .

Redistribution/Accumulation of Body Fat

Inform patients that redistribution or accumulation of body fat may occur in patients receiving antiretroviral therapy and that the cause and long-term health effects of these conditions are not known at this time .

Pregnancy Registry

Advise patients that there is a pregnancy exposure registry that monitors pregnancy outcomes in women exposed to Kivexa during pregnancy [see Use in Specific Populations (8.1)].

Lactation

Instruct women with HIV-1 infection not to breastfeed because HIV-1 can be passed to the baby in the breast milk .

Missed Dose

Instruct patients that if they miss a dose of Kivexa, to take it as soon as they remember. Advise patients not to double their next dose or take more than the prescribed dose .

Availability of Medication Guide

Instruct patients to read the Medication Guide before starting Kivexa and to re-read it each time the prescription is renewed. Instruct patients to inform their physician or pharmacist if they develop any unusual symptom, or if any known symptom persists or worsens.

EPIVIR, Kivexa, TRIZIVIR, and ZIAGEN are registered trademarks of the ViiV Healthcare group of companies.

The other brands listed are trademarks of their respective owners and are not trademarks of the ViiV Healthcare group of companies. The makers of these brands are not affiliated with and do not endorse the ViiV Healthcare group of companies or its products.

Manufactured for:

ViiV Healthcare

Research Triangle Park, NC 27709

by:

GlaxoSmithKline

Research Triangle Park, NC 27709

Lamivudine is manufactured under agreement from

Shire Pharmaceuticals Group plc

Basingstoke, UK

©2017 the ViiV Healthcare group of companies. All rights reserved.

EPZ:13PI


MEDICATION GUIDE

Kivexa® (ep' zih com)

(abacavir and lamivudine)

tablets


What is the most important information I should know about Kivexa?

Kivexa can cause serious side effects, including:

  • Serious allergic reactions (hypersensitivity reaction) that can cause death have happened with Kivexa and other abacavir-containing products. Your risk of this allergic reaction is much higher if you have a gene variation called HLA‑B*5701. Your healthcare provider can determine with a blood test if you have this gene variation.
  • If you get a symptom from 2 or more of the following groups while taking Kivexa, call your healthcare provider right away to find out if you should stop taking Kivexa.
  • Symptom

Group 1 Fever

Group 2 Rash

Group 3 Nausea, vomiting, diarrhea, abdominal (stomach area) pain

Group 4 Generally ill feeling, extreme tiredness, or achiness

Group 5 Shortness of breath, cough, sore throat

  • A list of these symptoms is on the Warning Card your pharmacist gives you. Carry this Warning Card with you at all times.
  • If you stop Kivexa because of an allergic reaction, never take Kivexa (abacavir and lamivudine) or any other abacavircontaining medicine (TRIUMEQ ® , TRIZIVIR ® or ZIAGEN ® ) again.
  • If you have an allergic reaction, dispose of any unused Kivexa. Ask your pharmacist how to properly dispose of medicines.
  • If you take Kivexa or any other abacavir‑containing medicine again after you have had an allergic reaction, within hours you may get lifethreatening symptoms that may include very low blood pressure or death.
  • If you stop Kivexa for any other reason, even for a few days, and you are not allergic to Kivexa, talk with your healthcare provider before taking it again. Taking Kivexa again can cause a serious allergic or life‑threatening reaction, even if you never had an allergic reaction to it before.

If your healthcare provider tells you that you can take Kivexa again, start taking it when you are around medical help or people who can call a healthcare provider if you need one.

  • Build-up of acid in your blood (lactic acidosis). Lactic acidosis can happen in some people who take Kivexa. Lactic acidosis is a serious medical emergency that can cause death. Call your healthcare provider right away if you get any of the following symptoms that could be signs of lactic acidosis:

- feel very weak or tired - feel cold, especially in your arms and legs

- unusual (not normal) muscle pain - feel dizzy or light-headed

- trouble breathing - have a fast or irregular heartbeat

- stomach pain with nausea and vomiting

  • Serious liver problems can happen in people who take Kivexa. In some cases, these serious liver problems can lead to death. Your liver may become large (hepatomegaly) and you may develop fat in your liver (steatosis). Call your healthcare provider right away if you get any of the following signs or symptoms of liver problems:

- your skin or the white part of your eyes - loss of appetite for several days or longer

turns yellow (jaundice) - nausea

- dark or “tea-colored” urine - pain, aching, or tenderness on the right side

- light-colored stools (bowel movements) of your stomach area

You may be more likely to get lactic acidosis or serious liver problems if you are female, very overweight (obese), or have been taking nucleoside analogue medicines for a long time.

  • Worsening of hepatitis B virus in people who have HIV-1 infection. If you have HIV-1 and hepatitis B virus (HBV) infection, your HBV may get worse (flare-up) if you stop taking Kivexa. A “flare-up” is when your HBV infection suddenly returns in a worse way than before. Worsening liver disease can be serious and may lead to death
    • Do not run out of Kivexa. Refill your prescription or talk to your healthcare provider before your Kivexa is all gone.
    • Do not stop Kivexa without first talking to your healthcare provider.
    • If you stop taking Kivexa, your healthcare provider will need to check your health often and do blood tests regularly for several months to check your liver.
  • Resistant Hepatitis B Virus (HBV). If you have HIV-1 and hepatitis B, the hepatitis B virus can change (mutate) during your treatment with Kivexa and become harder to treat (resistant).
  • Use with interferon and ribavirinbased regimens. Worsening of liver disease that has caused death has happened in people infected with both HIV-1 and hepatitis C virus who are taking antiretroviral medicines and are also being treated for hepatitis C with interferon with or without ribavirin. If you are taking Kivexa and interferon with or without ribavirin tell your healthcare provider if you have any new symptoms.

What is Kivexa?

Kivexa is a prescription HIV-1 (Human Immunodeficiency Virus-type 1) medicine used with other antiretroviral medicines to treat HIV-1 infection. HIV-1 is the virus that causes Acquired Immune Deficiency Syndrome (AIDS). Kivexa contains 2 prescription medicines, abacavir (ZIAGEN) and lamivudine (EPIVIR®).

Kivexa should not be used in children weighing less than 55 pounds (25 kg).

When used with other antiretroviral medicines to treat HIV-1 infection, Kivexa may help:

  • reduce the amount of HIV-1 in your blood. This is called “viral load”.
  • increase the number of CD4+ (T) cells in your blood, that help fight off other infections.

Reducing the amount of HIV-1 and increasing the CD4+ (T) cells in your blood may help improve your immune system. This may reduce your risk of death or getting infections that can happen when your immune system is weak (opportunistic infections).

Kivexa does not cure HIV-1 infection or AIDS. You must keep taking HIV-1 medicines to control HIV-1 infection and decrease HIV-related illnesses.


Who should not take Kivexa?

Do not take Kivexa if you:

  • have a certain type of gene variation called the HLA-B*5701 allele. Your healthcare provider will test you for this before prescribing treatment with Kivexa.
  • are allergic to abacavir or any of the ingredients in Kivexa. See the end of this Medication Guide for a complete list of ingredients in Kivexa.
  • have liver problems.

What should I tell my healthcare provider before taking Kivexa?

Before you take Kivexa tell your healthcare provider if you:

  • have been tested and know whether or not you have a particular gene variation called HLA‑B*5701.
  • have or have had liver problems, including hepatitis B or C virus infection.
  • have kidney problems.
  • have heart problems, smoke, or have diseases that increase your risk of heart disease such as high blood pressure, high cholesterol, or diabetes.
  • drink alcohol or take medicines that contain alcohol.
  • are pregnant or plan to become pregnant. Talk to your healthcare provider if you are pregnant or plan to become pregnant.
  • Pregnancy Registry. There is a pregnancy registry for women who take antiretroviral medicines during pregnancy. The purpose of this registry is to collect information about the health of you and your baby. Talk to your healthcare provider about how you can take part in this registry.
  • are breastfeeding or plan to breastfeed. Do not breastfeed if you take Kivexa.
    • You should not breastfeed if you have HIV-1 because of the risk of passing HIV-1 to your baby.

Tell your healthcare provider about all the medicines you take, including prescription and over-the-counter medicines, vitamins, and herbal supplements.

Some medicines interact with Kivexa. Keep a list of your medicines to show your healthcare provider and pharmacist. You can ask your healthcare provider or pharmacist for a list of medicines that interact with Kivexa. Do not start taking a new medicine without telling your healthcare provider. Your healthcare provider can tell you if it is safe to take Kivexa with other medicines.

Tell your healthcare provider if you take:

  • any other medicine to treat HIV-1
  • medicines to treat hepatitis viruses such as interferon or ribavirin
  • methadone

How should I take Kivexa?

  • Take Kivexa exactly as your healthcare provider tells you.
  • Do not change your dose or stop taking Kivexa without talking with your healthcare provider. If you miss a dose of Kivexa, take it as soon as you remember. Do not take 2 doses at the same time. If you are not sure about your dosing, call your healthcare provider.
  • Stay under the care of a healthcare provider while taking Kivexa.
  • Kivexa may be taken with or without food.
  • Tell your healthcare provider if your child has trouble swallowing Kivexa tablets.
  • Do not run out of Kivexa. The virus in your blood may increase and the virus may become harder to treat. When your supply starts to run low, get more from your healthcare provider or pharmacy
  • If you take too much Kivexa, call your healthcare provider or go to the nearest hospital emergency room right away.

What are the possible side effects of Kivexa?

  • Kivexa can cause serious side effects including:
  • See “What is the most important information I should know about Kivexa?”
  • Changes in your immune system (Immune Reconstitution Syndrome) can happen when you start taking HIV-1 medicines. Your immune system may get stronger and begin to fight infections that have been hidden in your body for a long time. Tell your healthcare provider right away if you start having new symptoms after you start taking Kivexa.
  • Changes in body fat can happen in people who take HIV-1 medicines. These changes may include an increased amount of fat in the upper back and neck (“buffalo hump”), breast, and around the middle of your body (trunk). Loss of fat from the legs, arms, and face may also happen. The exact cause and long-term health effects of these conditions are not known.
  • Heart attack (myocardial infarction). Some HIV-1 medicines including Kivexa may increase your risk of heart attack.

The most common side effects of Kivexa include:

  • - trouble sleeping - nausea
  • - depression - diarrhea
  • - headache - rash
  • - tiredness - fever
  • - dizziness

Tell your healthcare provider if you have any side effect that bothers you or that does not go away.

These are not all the possible side effects of Kivexa. For more information, ask your healthcare provider or pharmacist. Call your doctor for medical advice about side effects. You may report side effects to FDA at 1‑800‑FDA‑1088.


How should I store Kivexa?

  • Store Kivexa at 59°F to 86°F (15°C to 30°C).

Keep Kivexa and all medicines out of the reach of children.


General information for safe and effective use of Kivexa.

Medicines are sometimes prescribed for purposes other than those listed in a Medication Guide. Do not use Kivexa for a condition for which it was not prescribed. Do not give Kivexa to other people, even if they have the same symptoms that you have. It may harm them.

If you would like more information, talk with your healthcare provider. You can ask your healthcare provider or pharmacist for the information about Kivexa that is written for health professionals.

For more information go to www. EPZICOM.com or call 1-877-844-8872.


What are the ingredients in Kivexa?

Active ingredients: Kivexa and lamivudine

Inactive ingredients: magnesium stearate, microcrystalline cellulose, sodium starch glycolate.

Tablet film coating contains: OPADRY® orange YS-1-13065-A made of FD&C Yellow No. 6, hypromellose, polyethylene glycol 400, polysorbate 80, and titanium dioxide.

  • Manufactured for: by:
  • ViiV Healthcare GlaxoSmithKline
  • Research Triangle Park, NC 27709 Research Triangle Park, NC 27709

Lamivudine is manufactured under agreement from Shire Pharmaceuticals Group plc, Basingstoke, UK

EPIVIR, Kivexa, TRIUMEQ, TRIZIVIR, and ZIAGEN are registered trademarks of the ViiV Healthcare group of companies.

The other brands listed are trademarks of their respective owners and are not trademarks of the ViiV Healthcare group of companies. The makers of these brands are not affiliated with and do not endorse the ViiV Healthcare group of companies or its products.

©2017 the ViiV Healthcare group of companies. All rights reserved.

EPZ:12MG


This Medication Guide has been approved by the U.S. Food and Drug Administration.


Revised: 03/2017


Kivexa pharmaceutical active ingredients containing related brand and generic drugs:


Kivexa available forms, composition, doses:


Kivexa destination | category:


Kivexa Anatomical Therapeutic Chemical codes:


Kivexa pharmaceutical companies:


References

  1. Dailymed."ZIAGEN (ABACAVIR SULFATE) TABLET, FILM COATED ZIAGEN (ABACAVIR SULFATE) SOLUTION [VIIV HEALTHCARE COMPANY]". https://dailymed.nlm.nih.gov/dailym... (accessed August 28, 2018).
  2. Dailymed."LAMIVUDINE TABLET, FILM COATED [APOTEX CORP.]". https://dailymed.nlm.nih.gov/dailym... (accessed August 28, 2018).
  3. Dailymed."LAMIVUDINE: DailyMed provides trustworthy information about marketed drugs in the United States. DailyMed is the official provider of FDA label information (package inserts).". https://dailymed.nlm.nih.gov/dailym... (accessed August 28, 2018).

Frequently asked Questions

Can i drive or operate heavy machine after consuming Kivexa?

Depending on the reaction of the Kivexa after taken, if you are feeling dizziness, drowsiness or any weakness as a reaction on your body, Then consider Kivexa not safe to drive or operate heavy machine after consumption. Meaning that, do not drive or operate heavy duty machines after taking the capsule if the capsule has a strange reaction on your body like dizziness, drowsiness. As prescribed by a pharmacist, it is dangerous to take alcohol while taking medicines as it exposed patients to drowsiness and health risk. Please take note of such effect most especially when taking Primosa capsule. It's advisable to consult your doctor on time for a proper recommendation and medical consultations.

Is Kivexa addictive or habit forming?

Medicines are not designed with the mind of creating an addiction or abuse on the health of the users. Addictive Medicine is categorically called Controlled substances by the government. For instance, Schedule H or X in India and schedule II-V in the US are controlled substances.

Please consult the medicine instruction manual on how to use and ensure it is not a controlled substance.In conclusion, self medication is a killer to your health. Consult your doctor for a proper prescription, recommendation, and guidiance.

advertisement

Review

sdrugs.com conducted a study on Kivexa, and the result of the survey is set out below. It is noteworthy that the product of the survey is based on the perception and impressions of the visitors of the website as well as the views of Kivexa consumers. We, as a result of this, advice that you do not base your therapeutic or medical decisions on this result, but rather consult your certified medical experts for their recommendations.

Visitor reports

Visitor reported useful

No survey data has been collected yet

One visitor reported side effects

Did you get side effects while taking the Kivexa drug, or were there no side effects?
According to the survey conducted by website sdrugs.com users, the below-mentioned percentages indicate the number of people experiencing the side effects and the number of people not experiencing the side effects when taking Kivexa medicine. Every drug produces minimal side effects, and they are negligible most times, when compared to the desired effect [use] of the medicine. Side effects depend on the dose you are taking, any drug interactions that happen when you are on other medications, if the patient is sensitive, and other associated conditions. If you cannot tolerate the side effects, consult your doctor immediately, so he can either adjust the dose or change the medication.
Visitors%
No side effects1
100.0%

Visitor reported price estimates

No survey data has been collected yet

Visitor reported frequency of use

No survey data has been collected yet

One visitor reported doses

What is the dose of Kivexa drug you are taking?
According to the survey conducted among sdrugs.com website users, the maximum number of people are using the following dose 201-500mg. Few medications come in only one or two doses. Few are specific for adult dose and child dose. The dose of the medicine given to the patient depends on the severity of the symptom/disease. There can be dose adjustments made by the doctor, based on the progression of the disease. Follow-up is important.
Visitors%
201-500mg1
100.0%

Visitor reported time for results

No survey data has been collected yet

Visitor reported administration

No survey data has been collected yet

Visitor reported age

No survey data has been collected yet

Visitor reviews


There are no reviews yet. Be the first to write one!


Your name: 
Email: 
Spam protection:  < Type 22 here

The information was verified by Dr. Rachana Salvi, MD Pharmacology

© 2002 - 2024 "sdrugs.com". All Rights Reserved